
Habitat User Guide

Edition 1

for

Habitat 1.0.0 and greater

Nigel Stuckey

nigel.stuckey@systemgarden.com

Copyright System Garden Ltd 2005. All rights reserved.

mailto:nigel.stuckey@systemgarden.com

Table of Contents
1Tour..5

 1 Getting Started...10

 1.1 Collection by User..10

 1.2 System Collection...10

 1.3 Initial ghabitat view...10

 2 Concepts..12

 2.1 Architecture..12

 2.1.1 Single Host: ghabitat + clockwork..12

 2.1.2 Many Hosts: ghabitat + many clockworks..12

 2.1.3 Many Hosts with Repository: ghabitat + clockwork + harvest......................................14

 2.1.4 Extensible Collection Methods...15

 2.1.5 System vs Private Clockwork Instances...16

 2.1.6 Storage & Transport Integration...16

 2.2 Data Format..16

 2.3 Data Collection...17

 2.4 Data Addressing...19

 2.5 Data Storage..20

 2.6 Ringstore & SQLRingstore...20

 2.6.1 Local Data Storage...21

 2.6.2 Peer Data Access...22

 2.6.3 Remote Data Repository..22

 2.7 Data Replication...23

 2.8 User Interfaces...23

 2.8.1 Command Line...23

 2.8.2 Curses...24

 2.8.3 Graphical...24

 3 Clockwork: The Collection Agent...25

 3.1 Starting...25

 3.2 Stopping...25

 3.3 Status...26

 4 Graphical Tools..27

 4.1 Data Visualisation...27

 4.1.1 Data In Charts or Graphs...28

 4.1.2 Data In Tables..28

 4.1.3 Data In Row Popups From a Table..29

 4.2 Data Navigation..30

 4.2.1 Finding Data Sources...30

 4.2.2 Source Exploration...31

 4.2.3 Changing Timescales...32

 4.2.4 Selecting Curves...32

 4.2.5 Zooming and Panning Graphs..34

 4.2.6 Adapting Curves...35

 4.2.7 Custom Graphs...37

 4.2.8 Selecting Instances...37

 4.3 Import and Export...37

 4.3.1 Email...37

 4.3.2 External Tools...38

 4.3.3 Interchange Files..39

 4.4 Data Files...39

 4.4.1 Saving Data in Files..39

 4.4.2 Opening Data Files...40

 4.4.3 Closing Data Files...40

 4.5 Data Access from Peer Hosts..40

 4.5.1 Peer Data over Filesystem...41

 4.5.2 Peer Data over Network...41

 4.5.3 Data from Repository..41

 4.6 Graphical Viewer Information & Configuration...42

 4.6.1 Configuration Files..42

 4.6.2 Data Source History..42

 4.6.3 Viewing Current Configuration..43

 5 Text Terminal Tools...45

 5.1 Track...45

 6 Command Line Tools...46

 6.1 Common Arguments..46

 6.2 Data Addressing...47

 6.3 habget...47

 6.4 habput...47

 6.5 Clockwork & killclock..48

 6.6 /etc/init.d/habitat...48

 6.7 Other commands..48

 7 System Performance..50

 7.1 Indicators..50

 7.1.1 System..50

 7.1.2 Storage...50

 7.1.3 Network...51

 7.1.4 Other Indicators..51

 7.2 Adding to the standard data...51

 7.2.1 Synthesising New Values...52

 7.3 What is Abnormal?...52

 7.4 Further Reading..52

 8 Events..53

 8.1 Event Queue...53

 8.2 Watching Jobs..53

 8.3 Watched Sources...53

 8.4 Pattern-Action Data..53

 8.5 Thresholds..54

 9 Administration..55

 9.1 Replication...55

 9.2 Logs & Errors...55

 9.3 Jobs...55

 9.4 Raw Data...56

 10 Diagnostics...57

 10.1 Log Configuration...57

 10.2 Collecting Less Severe Logs..57

 10.3 Viewing Logs from the Choice Tree...58

 10.4 Dynamic Viewing of Logs from Statusbar..58

 11 Appendix..60

 11.1 Manual Pages...60

 11.1.1 clockwork..61

 11.1.2 ghabitat...66

 11.1.3 habget...71

 11.1.4 habput...72

 11.1.5 killclock..74

 11.2 Collected Data..75

 11.2.1 Linux Data...75

 11.2.2 Solaris Data..78

 11.3 Fat Headed Array Format...80

 11.4 Job Table Format...82

 11.5 Pattern Matching Table Format..83

 11.6 Watched Sources Table Format...84

 11.7 Event Table Format..84

 1 A Tour of Habitat
Habitat is a system capacity monitor with flexible historic data storage, easily extendible for applications or

third party devices.

Historic data is central to the workings of habitat, with all collected information being sent to the local light

weight data store and thence to an optional archive for long term storage. By reducing the samples of data

over time (a process called cascading), habitat is also able to give long term trends from only local data

whilst keeping modest storage requirements.

A large number of measurements are taken from the system, including simple, overall usage, disk storage,

processor utilisation and network usage. All the metrics can be examined over arbitrary time to gain a full

perspective of the work the machine has done.

Starting Habitat from your desk top menu, or typing ghabitat on the command line will start habitat's GUI. It

appears with a graph of the machine's overall utilisation over recent time.

On the left hand side are the set of choices that can be displayed, with the right-hand pane showing the

visualisation of the data. When the system is first started, there may be little or no data, so a blank screen

may be presented for a while! By default, data is collected every minute and display is refreshed to show the

new curve. In the image above, the collector may have been running for three to four samples (the same

number of minutes), but if the collector had been running for longer or independently of the GUI, then there

would be more data to see initially. But the a blank display will not stay blank for long!

This manual explains how to visualise data that is collected and how to navigate around the sources that are

available. However, as a quick taster, this is a sample of what can be seen.

Long term growth in processor usage, shown below, shows a gradual climb over a period of nine months,

with a sudden late surge of activity:

The image below shows growth in local storage on two partitions on a single machine over a period of seven

months. The top chart shows the root file system (/) capacity use growing gradually in size over the period

from 65% to 85%, the bottom /home chart, shows a sudden drop after a similar gradual climb.

The image below takes the previous view and adds in the volume of disk requests on each chart (rios and

wios for read and write requests), and scales the new curves to fit in the utilisation range. The curves are

colour coded against the pick list on the right onto which the scaling controls have been added.

The next pair of images represent a busy network chart with lots of samples. Zooming into the July part of

the chart (by dragging a box over the area of interest with your mouse), will expand the display to show

greater detail, as shown in the lower image. Note how the time scale on the horizontal ruler changes to give

the most accurate information possible, which in this case switches the display to dates of the week, with the

starting date on the left.

The chart zooming in habitat runs from years to seconds, as does the representations of time on the

horizontal axis. A selection of time scales is shown below.

By default, habitat collects 'interesting' processes only and filters out smaller or mostly idle processes. This

helps to reduce the data that needs to be stored and manipulated, critical for the successful examinations of

processes.

The next image shows multiple processes being tracked for memory on a system (Open Office Writer and X-

Windows in this example). Processes rarely give significant quantities of memory back to a system, so it is

often useful to profile an application over time before it goes into production. The image shows the process

sizes in MBytes: the underlying metric is KBytes, but ghabitat has been used to reduce the curve values by

1/1000.

The memory usage may be augmented with the processor usage for each process by displaying %cpu,

which is displayed on the same charts in a different colour. The %cpu measure is the amount of the system's

cpu taken over the lifetime of the processes involved, thus peaks in demand are flattened and seen over

time, it can be counter intuitive. To display both curves, the size values has be reduced in magnitude to

1/10'000, effectively making 10 MBytes units for size.

Other machines can be displaced in the same tool. Below is the choice tree with several hosts connected

(under my hosts) and also some files from previous saved performance sets (under my files).

Not all data has be generated by habitat: both habitat and harvest can import arbitrary tabular time series

data in the FHA format (explained later). In the example below, data from from the Unix data gathering tool

sar has been imported into the harvest repository. The repository appears as an option in the choice tree and

the machine sources have been assigned an organisational hierarchy within harvest to help navigation. The

node sarsys holds the system information from sar.

Integrating the repository is simple: an administrator provides a URL, together with optional authentication

information. All repository data is then grafted into the choice tree.

 2 Getting Started
Habitat comes in two parts: the collection agent (called clockwork) and the viewing client (called ghabitat but

others are available). It can be started in many ways, and these are described in full later in this document

and in detail in the Administration manual. However, to get started, we shall describe two common ways in

which habitat can be run.

 2.1 Collection by User

If you install from the tar file, with no automatic starting of the collection daemon, the graphical tool will start it

for you. This is the simplest way to start using habitat under Solaris. Firstly, extract the package from the tar

file, then cd into the bin directory and run ghabitat at the command line. Below is an example of installation

and running:

tar xvzf habitat-1.0.0-mdk1.i586.rpm
cd habitat-1.0.0/bin
ghabitat

Once started, ghabitat will look for a central instance of clockwork (the collection agent) that may already be

running. If it does (from a previous run perhaps), then it attempts to load a default set of data from it. If it

cannot find clockwork then it will ask the user if you want to start one. The options are described later in this

document, but for now, click on start.

 2.2 System Collection

This is the simplest of all and is the default way in which an RPM package is installed. When rpm -i is issued,

habitat loads itself into the correct system location for a Linux system and automatically starts clockwork the

collection agent. The initialisation scripts are also amended to start collection each time the system is

booted.

When ghabitat is started from the system location (like /usr/bin/ghabitat), it will work out that collection is

already running and attempt to get the initial data from it.

 2.3 Initial ghabitat view

Once started, the graphical client ghabitat, presents the user with an explorer-like interface, with data choices

on the left and visualisation on the right. In addition to this, the charting displays also have a curve selection

list on the extreme right plus some zoom and scaling buttons.

Now we have the viewing platform running, allow clockwork to collect some data for a few minutes from the

system and read more about the way habitat works.

 3 Concepts

 3.1 Architecture

Habitat in its simplest form is a two tier application: an agent process running as a daemon on each machine

being examined and a client process to look at the data.

Long term or high sample rate data can be moved off to a specialist repository, called harvest, which also

acts a reporting portal and an analytics engine. Harvest is covered in a separate set of documentation

available at http://www.systemgarden.com/harvest and provides another optional tier to the architecture.

The following section describes the architecture of common deployments and the major concepts needed to

understand habitat.

 3.1.1 Single Host: ghabitat + clockwork

In its simplest form, habitat collects data and displays the timeseries on the same machine. Collection is

carried out by a daemon program by the name of clockwork, which runs many periodic jobs, each of which

collects data or carries out a calculation. The default configuration takes runs system collection jobs and

inserts them into a central ringstore datastore.

A visualisation tool, such as ghabitat queries the daemon (or reads the datastore directly) and collects the

data for tabular display or graphical plotting.

This scenario is found in one-off testing, when using single machines or running additional instances of

habitat that are independent of a general collection infrastructure.

 3.1.2 Many Hosts: ghabitat + many clockworks

For small networks of machines with a handful of data viewers, habitat may be configured using peer level

connections. By adding additional hosts to ghabitat's set of choices, a user may select to visualise data from

remote machine.

To keep performance high, ghabitat only ever uses one connection at a time and polls at the same frequency

of the sample interval. The connections are stateless, so the clockwork instances have no overhead in their

role as servers of data. Additionally, the protocol is based on HTTP (but on a non standard port), that it

Illustration 1: Habitat running on a single machine, monitoring its own host. Ghabitat

displays information obtained from a data file or from the clockwork collection agent.

clockwork

Ringstore

ghabitat

Other data files

Monitored entity

http://www.systemgarden.com/harvest

allows for easy routing and checking in network infrastructures.

The result is a balance between containing demand and low administration.

 3.1.3 Many Hosts with Repository: ghabitat + clockwork + harvest

For larger configurations or when there are many potential viewers, an additional component is employed to

remove load from monitored systems and increase scalability. This is a central repository containing an

archive of machine data and is implemented using the harvest product, also available from system garden

(http://www.systemgarden.com/harvest).

Data may be sent directly to harvest using the route system, although there are many advantages in

indirectly posting data. Habitat does this by default when it replicates many pieces of data at periodic

intervals, thus batching the updates and minimising another potential bottleneck.

With a repository present, ghabitat will use that source to obtain data for all hosts and potentially many other

centrally computed statistics. In this case, there is no additional load on the monitored servers.

Only unreplicated data would need to be collected from the monitored servers, generally the case where very

recent data had been collected but the replication process had not been carried out. The process of

replication is configurable, both time frequency and the data rings sent and received.

Illustration 2: Several instances of habitat, one of which is acting as a visualisation tool.

Whilst many connections can be in place, ghabitat only polls for currently displayed data

and at the same rate it is sampled, thus reducing the overall load to a minimum.

clockwork

Ringstore

ghabitat

clockwork

Ringstore

clockwork

Ringstore clockwork

Ringstore

Peer machines running clockwork, storing data in ringstore

collections and serving it for clients running ghabitat. Only

currently displayed data is polled

Client runs clockwork to collect local data and

ghabitat to view that data together with data

directly from peer machines. Only hosts with

currently displayed data are polled; the others are

held in a list of potential choices

Habitat (as client)

Habitat

Habitat

Habitat

Potential connections

held as choices in the

ghabitat client

http://www.systemgarden.com/harvest

The two can communicate by HTTP or by sharing the data file to which clockwork writes. Both these

protocols are network friendly and allow multiple viewers to see the same data, or a single viewer to see

many data sets.

 3.1.4 Extensible Collection Methods

Within clockwork is the ability to extend collected data and the methods by which it can be collected. Data

capture is scheduled using a single table (clockwork's job table) which may be different for each instance of

clockwork. By adding or changing the jobs different data can be collected at custom time intervals. Each job

runs a method, with several ones included in the standard distribution. New methods can be defined by

adding code to clockwork at run time in the form of shared objects that have a standard interface. This is the

most efficient way of adding new collection and computation capabilities, as the minimum number of

processes are involved and overhead is kept to a minimum.

Illustration 3: Top level architecture of habitat and harvest, showing several clients running

habitat, one of which is viewing data with ghabitat, and a single harvest repository. Using

harvest lessens the load on the the monitored machines, stores detailed long term data

and provides organisational wide analytics

clockwork

Ringstore

ghabitat

clockwork

Ringstore

clockwork

Ringstore

repository - Harvest

SQL Ringstore

clockwork

Ringstore

Peer machines running clockwork, storing data in ringstore

collections and sending it to the repository for long term central

storage. Ghabitat access from the client is only needed for the

latest data which hasn't yet been sent to the repository

Client runs clockwork to collect

local data and ghabitat to view

that data; information for other

hosts comes from the repository

The repository harvest collects data

replicated by clockwork instances and

stores it in a SQL based warehouse.

Central analytics may be calculated on

this data and viewed like all habitat

time series

Harvest (as repository)

Habitat (as client)

HabitatHabitatHabitat

Selected data is pushed to the

repository from each

clockwork instance

 3.1.5 System vs. Private Clockwork Instances

On a single machine, many instances of clockwork can run, but only one can provide the dependable system

service, which is able to serve data over the network using the standard port. Typically, a system-wide

instance would cover most eventualities, but for some issues more detail profiling is required, such as heavily

monitoring an application under test. In these cases, additional, private clockworks can be run, saving data to

their own data files. These files can be viewed in real time or saved for later examination using the standard

tools

 3.1.6 Storage & Transport Integration

Habitat provides several ways of viewing collected data. Chief among them is habget, a command line tool to

extract data for use in Unix filter pipelines, and ghabitat, a graphical application written in Gtk+. A more

sophisticated product for larger installations and grids is under development by System Garden. It is cross

platform and provides many advanced features (see separate documentation and the website

http://www.systemgarden.com for more details).

 3.2 Data Format

All data in habitat is tabular and can be expressed externally using a format called the Fat Headed Array, an

example of which is shown below. It is tab delimited and similar in function to CSV (comma separated

values) data, except that it can also contain sets of information attached to each column. These are known

as info rows and are printed over several lines below the single column name row.

tom dick harry
Thomas Richard Harold first_name
Smith Brown Bloggs last_name
------ ------- ------
1 2 3
4 5 6
7 8 9

Illustration 4: The user method foobar is dynamically linked in to clockwork's

address space at run time, using a shared object

user_foobar

(user method)
job dispatchfoobar

(another built-in method)

probe

(built-in method)

The user method foobar is dynamically

linked in to clockwork's address space

at run time, using a shared object

Each info row is

named with an

extra field

Info rows contains

more information

about each column

http://www.systemgarden.com/

The single row of column names and the zero or more info rows, form an extended header block that is

terminated by two or more dashes (--) on a single line. In the example above, the dashes have been

extended to form a ruler line of the width of each column, similar to the convention of a SQL table display.

Following the ruler is the tabulated array of values, which may be any sequence of characters excluding tab

(\t) and the double quote (“). In summary, The fat headed array must have the same number of columns

through out each row, but will be one more for the second and successive headers rows (the info rows).

 3.3 Data Collection

Data is gathered by habitat's agent, clockwork, which can pull the data from a source or can have data

pushed directly into the data store or other data stream.

In order to pull data, clockwork (habitat's agent) has a table of jobs that it executes at regular intervals

(described later). By default these jobs run probes, that collect all manner of system information and send it

to a data stream called a route. These routes usually address local persistent data storage, so that

information sent to a route will end up being saved.

Data can also be pushed on to routes independently of clockwork, by using an API or the command line tool,

habput. This will take text, in the format of a Fat Headed Array, and will send it to the route address specified.

A time series of data is built up by repeatedly executing a probe (or receiving FHAs from external tools) to

store a sequence of tables. Each table defines data over periods of time and is assigned a time stamp,

sequence number and duration. This is often expressed in a tabular context by using the special columns

_time, _seq and _dur.

Each probe operation or FHA store will typically store data relating to a single point in time. However, when

importing or reporting sets of data, the data series is concatenated into a single table and uses the_seq

column to distinguish between samples.

Illustration 5: The components involved in polling (pulling) monitored activities or statistics and

storing them inside habitat. Ringstores are conventionally used as they are self-contained and

require little maintenance

probe

probe

probe

job dispatch

An Instance of clockwork with several probes

running, each configured as a job. When a job

run is triggered, the probe polls for statistics

ringstore route

procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy id wa
 3 0 0 74804 15656 240660 0 0 429 20 1178 484 7 2 79 11
 0 0 0 74684 15672 240660 0 0 0 6 1272 824 3 1 96 0
 0 0 0 74620 15672 240660 0 0 0 0 1443 694 0 1 99 0
 0 0 0 74620 15680 240660 0 0 0 2 1394 691 2 1 97 0
 0 0 0 74492 15696 240680 0 0 4 30 1426 631 4 1 93 2
 0 0 0 74492 15704 240680 0 0 0 5 1409 597 5 1 94 0
 0 0 0 74492 15704 240680 0 0 0 0 1406 566 2 1 97 0
 0 0 0 74524 15704 240680 0 0 0 0 1405 570 3 1 96 0
 0 0 0 74540 15716 240680 0 0 0 6 1339 614 1 1 99 0
 0 0 0 73644 15728 241024 0 0 71 2 1251 426 1 0 97 1
 0 0 0 72108 15744 241488 0 0 96 1 1017 268 2 0 94 4
 0 0 0 72044 15760 241540 0 0 11 3 1026 293 1 0 98 0
 0 0 0 72044 15768 241540 0 0 0 3 1012 252 0 0 99 0
 0 0 0 67900 15804 243852 0 0 315 0 1026 296 3 0 87 10
 0 0 0 66588 15836 244656 0 0 166 3 1030 332 3 0 93 4
 0 0 0 65308 15860 245156 0 0 103 3 1028 317 2 0 93 4
 0 0 0 64220 15904 245956 0 0 166 47 1037 323 4 0 84 11
 0 0 0 64252 15920 245956 0 0 0 8 1025 316 2 0 98 0
 0 0 0 64236 15920 245956 0 0 0 2 1014 263 1 0 99 0

Monitored activity or statistics

Probes process returned data and store the

results in ring buffer structures, simply called

rings held in a file called a ringstore. Many

rings can be stored in the file, each individually

sized so that the new data overwrites old when

capacity is reached

A table of values are used for each sample, so that multiple instances may be expressed with out the use of

excessive columns. For example, if habitat gathers information about storage, the FHA may look like the

following.

In the example above, there are two sets of three lines, with each set sharing the same sequence number:

200 and 201. These rows belong to the same sample, share the same time stamp but have different values

for id, which is the instance key. In the case of storage, the instance key is a subset of the device name.

Thus, to get a time series for a particular disk (say hda1), select the rows with id=hda1 and sort on _seq.

 3.4 Data Addressing

Habitat and harvest share the same addressing scheme but have different implementations, suiting their

particular design goals. Habitat generally uses a ringstore whereas Harvest uses a SQLringstore, which is

based on more heavy weight database technology. However, as the route mechanism in habitat connects to

both systems of storage, data is universally accessible across the product range.

To identify the different types of storage, a full route address contains a prefix, ending in a colon (:). For

ringstores, the prefix is rs: and for the SQLringstore in the harvest repository the prefix is sqlrs:.The type (or

driver) prefix is very similar to the URL format used in web browsers and have some similar capabilities. The

list of drivers currently supported are as follows:-

Illustration 6: The components involved in pushing data from user written utilities or applications

into habitat's storage system. Usually, this will involve the creation of data in a Fat Headed Array

(FHA) format and its insertion into a local ringstore using habput

User written code can push

data into a ringstore, instead

of it being pulled by clockwork.

The tool above runs habput to

place data inside habitat

habput

_seq _time id mount kread kwritten rios

200 1107372138 hda1 / 1.98 15.85 15.09 1277
200 1107372138 hda2 /usr 6.78 0.00 60.76 0.00
200 1107372138 hda3 /mnt/windows 0.00 0.00 0.00 0.00
201 1107372143 hda1 / 2.03 9.20 30.94 459.
201 1107372143 hda2 /usr 57.55 0.52 4.13 0.07
201 1107372143 hda3 /mnt/windows 0.00 0.00 0.00 0.00

Data transferred to habitat in the

Fat Headed Array (FHA) format

The habput utility appends FHA

data onto a ring in the ringstore.

This is the same storage

mechanism used by clockwork

when pulling data. As a ring-buffer

structure, new data overwrites old

when capacity is reached

user

reporting

tool

_seq _time id mount kread kwritten rios wios
--
200 1107372138 hda1 / 1.98 15.85 15.09 12779.53
200 1107372138 hda2 /usr 6.78 0.00 60.76 0.00
200 1107372138 hda3 /mnt/windows 0.00 0.00 0.00 0.00
201 1107372143 hda1 / 2.03 9.20 30.94 459.53
201 1107372143 hda2 /usr 57.55 0.52 4.13 0.07
201 1107372143 hda3 /mnt/windows 0.00 0.00 0.00 0.00

Sample 1

Sample 2

rs: Ringstore

sqlrs: SQLringstore

file: Plain file. When writing will append to existing file

fileov: Plain file. When writing will destructively overwrite existing file

http:

https:

Hypertext transfer protocol and secure hypertext transfer protocol, the

encrypted variety. Most standard URL formats are supported. Requires

configuration variables to be set up to allow communication though

proxies and to use accounts.

stdin:

stdout:

stderr:

Standard input, output and error. No further address required

none: Output will be disposed of. No further address required

 3.5 Data Storage

Data is generally collected in a local data store named a ringstore. This is a lightweight but structured storage

system that has a lower impact on the system than a full SQL database. It is based in key-value block

storage, currently implemented with GDBM.

Six dimensions are required to uniquely address a single datum, which are shown in the table below. Only

the first two are needed to insert data, that of file and ring names: all the other details come from the inbound

data.

File name

(or host name)

The file name that holds the data. There is usually one file per

machine with default central collection, although with personal

collection, this becomes a user choice. With sqlrs

(SQLringstore) from the harvest repository, this dimension is the

host name.

Ring name A collection of data tables sharing the same type or schema.

Typical values are sys for system information, io for storage and

net for network data. Note that the schema is not fixed or

predefined: see below for details.

Duration The interval between samples in seconds or 0 for an irregular

sampling period. If omitted then the data is consolidated over

all available durations (see below).

Column Optional selection of a column name, which is able to return a

single attribute of data (sets of columns may also be possible).

Sequence Optional single or range of sequence numbers, uniquely

identifying rows belonging to the same sample. Identified by

pre-pending s= to the range.

Time Optional single or range of time values, that can be used to

extract a time series from a ring of data. Identified by pre

File name

(or host name)

The file name that holds the data. There is usually one file per

machine with default central collection, although with personal

collection, this becomes a user choice. With sqlrs

(SQLringstore) from the harvest repository, this dimension is the

host name.

pending t= to the range. All time values are in the Unix time_t

format (seconds from 1/1/1970 or the epoch)

 3.6 Ringstore & SQLRingstore

The native format for habitat is the ringstore, which is based on a GDBM key-value storage database and is

typically held on storage local to the machine being monitored. Harvest is based on a SQL database and

makes its data available using an HTTP format using a web servelet. The format is known as SQLringstore

and has a very similar addressing format to the local ringstore.

The general format for ringstore and SQLringstore is as follows:-

[sql]rs:file_or_host,ring[,duration[,column]][,s=srange][,t=trange]

Where

[sql]rs: Either rs: or sqlrs: for ringstore or SQLringstore respectively

file_or_host The file name of the ringstore, conventionally ending with .rs to informally

indicate its type. With SQLringstore this will be the host name of the

machine that generated the data

ring Ring name, such as io, sys or net

duration Optional duration of samples, measured in seconds. 0 (zero) is taken to

mean an irregular event. If missing on reads, the consolidated view is

taken; if missing on writes, the column _dur will be expected in the data

column Optional column to extract when reading. Unused when writing

s=srange Sequence range. srange is of the form from [- [to]]

t=trange Time range. trange is of the form from [- [to]]

The following are examples of addresses used by habitat:-

rs:myhost.rs,sys,60 Ringstore file called myhost.rs, returning the ring

sys taken at 60 seconds interval

rs:/var/lib/habitat/myhost.rs,sys,300 Ringstore file called myhost.rs in the

/var/lib/habitat directory, returning the ring sys

taken at 300 seconds interval (five minutes). In

habitat, this is generally created automatically in a

process called cascading.

fileov:/home/fred/.habrc Flat text file, being the personal configuration of

habitat for the user fred. The file is .habrc in fred's

home directory. The type fileov: is chosen as the

file is replaced each time it is generated by habitat.

file:mylog.txt When used as an output, data is appended to the

file mylog.txt. Used as inputs, fileov: and file:

file:///home/nigel/proj/habitat/doc/user/mylog.txt

types are identical in method.

sqlrs:myhost,sys,300,*,s=428- As an input, data is extracted from the repository

(system myhost, ring sys at duration 300

seconds) and returned as a table. Only sequences

428 and greater are returned.

 3.6.1 Local Data Storage

In a standard configuration, habitat stores centrally collected data in a ringstore structure, which is held in a

single file. The file is called hostname.rs and is held in var in the application directory (for the .tar

distributions) or /var/lib/habitat (for the RPM distributions).

Individual users may also collect customised data for their own use, which will not be stored in the central

ringstore file. Typically, they will use this data in addition to the central information by mounting both files

within a visualisation tool such as ghabitat.

The central file is also used to provide peer data access and data replication (see below).

 3.6.2 Peer Data Access

The normal method to access local and remote data is to query the agents directly on each monitored

machine. The agent (clockwork) implements a network server to satisfy queries from the front end ghabitat

and other tools. When given a query, it accesses the central habitat ringstore on the local machine in order to

return the results. For security reasons, it is not possible to use this method to access any other file.

In ghabitat your local host's data will appear under 'local host' in the choice tree. To connect to other hosts

and get their data, select File->Host, type the name of the machine and click 'direct'. If successful, an entry

for that machine will appear in the choice tree, under the branch 'my hosts'.

It is also possible to export data files using a file sharing protocol such as NFS or CIFS and mount them on

remote machines. Using this technique for centrally collected ringstores may impact the ability the speed and

reliability of data access due to the nature of file locking and network bandwidth. However, this may be the

most appropriate way of sharing custom data collected by individual users as the files may not be as busy.

In ghabitat, connect to ringstore files by selecting File->Open and navigating to the location of the data file.

The file will appear in the choice tree under the branch 'my files'.

 3.6.3 Remote Data Repository

Using the standard configuration, the central ringstore file will grow to around 50 MBytes; more if additional

data is collected or retention periods are extended. Moreover, older data is summarised at a lower frequency

than originally collected to save space.

To keep data for longer, a remote repository may be used to archive data and can be used as a data source

within ghabitat just like ringstore files or host attachments. Such a repository is provided by the harvest

product, with data stored in the SQLringstore format.

From ghabitat, the repository is used by mapping the host into your choice tree. There are two methods.

Firstly, by directly referencing the host: selecting File->Host from the menu, typing the host name and

keeping the repository button highlighted. The host will appear under the branch 'my hosts' in the choice tree.

The second method is by browsing the repository from the choice tree. Hosts in the harvest repository may

be ordered by organisational structure. For example, a server in London's finance department may be

reached using the following tree path:

repository->Finance->London->theserver

Regardless of the method, the tree structure below the hosts will show the data that has been transferred to

the repository. See the Data Replication section for details of data transfer to the repository.

 3.7 Data Replication

Habitat sends data o the harvest repository by a process called replication. It enables data that

has been collected in the local ringstore to be synchronised with the repository and new data

transferred.

However, replication may also work both ways by allowing centrally created data to be propagated down to

satellite habitat instances. This is an ideal way of maintaining job tables or other data which needs to be

independent of network connections.

Typically, replication runs once a day, but can easily be increased for sites with a policy of frequent archiving.

The process is always initiated by clockwork using a job from its job table. If harvest or other similar tool

wanted to pull data from habitat, clockwork's network service should be used using standard route

conventions. Replication is not enabled in the standard configuration of habitat. Instructions to configure and

enable it are contained in the Administration Manual.

Replication of data has a number of benefits, including:-

1. Data is backed up to an alternative location (the repository)

2. Visualisation or extraction tools can use the repository for the data source, saving capacity on the

analysed machine

3. The repository can hold large quantities of data, which may be inappropriate to store locally on

machines being analysed.

4. The repository can be a specialist database machine, with large storage and general purpose data

handling

5. With the performance statistics of the whole enterprise in a single place, centralised analytics may be

run in an efficient manner.

See System Garden's harvest repository for more details.

 3.8 User Interfaces

A variety of visualisation and extraction tools exist for use with habitat, many of which are available in the

package and are described below. In addition, System Garden provides other tools to enhance the interface

which are available in separate packages. See http://www.systemgarden.com for more details.

 3.8.1 Command Line

Habitat provides two command line utilities for data extraction and insertion. As such, they can be used in

shell pipelines to build more complex commands.

habget extracts data from any supported route using and returns the data on stdout. See the manual later in

this documentation for details. However, as an example:-

http://www.systemgarden.com/

habget rs:/var/lib/habitat/myhost.rs,sys,60 | more

Will return the most recent data sample from the system probe and pipe the output into the utility 'more'. The

data will appear as a table as shown in examples above. The file is the standard location under Linux for

RPM installations.

habput is a method of inserting data onto a route for storage in a ringstore or SQLringstore. The manual for

its use is later in the documentation, however an example is shown below:-

habput rs:myfile.rs,myring,0 <<END
tom dick harry
--
1 2 3
4 5 6
END

Will read the table from stdin and send it to the ringstore myfile.rs, to be stored in the ring myring. The table

will be scanned and checked to confirm that it is tabular before it is stored. It is timestamped with the current

time and a sequence allocated depending on the existing contents of the ring.

The commands clockwork and killclock are used to stop and start the collection daemon on each machine.

These are explained in a section below.

The remaining commands are covered by the Administration Manual:-

habedit Edits configuration tables within ringstores

habmeth Runs clockwork methods from the command line

habprobe Runs built-in data collection probes from the command line

habrep Forces a replication cycle to take place

irs Interactive ringstore utility, allowing administration of the data held in ringstore files

 3.8.2 Curses

The curses-based, dumb terminal tool is not supported in the current release.

 3.8.3 Graphical

The main visualisation tool within the habitat suite is ghabitat. To start this, either select from the 'start' bar of

your windowing environment or type ghabitat on the command line.

 4 Clockwork: The Collection Agent

 4.1 Starting

If installed from an RPM package, clockwork will already be running and will restart every time the host is

booted. When ghabitat starts either locally or on a peer machine, it will be able to pick up data generated

from the daemon. This is the most convenient way of running habitat.

If data is not available or ghabitat pops-up a window asking to start collection, then clockwork is not running.

This will be the case if habitat was installed from a .tar package. If a full installation is required for data to be

collected by the system for the benefit of all, see the Administration Manual to start up the daemon.

If the data is for you own benefit only, then the GUI ghabitat is all you need. The tool will ask to start

collection if it is not already being done, using the pop-up below:-

Clock on Start collection to start clockwork just this once, or Always collect it clockwork should be started

when ever ghabitat runs. This is not a substitute for system-wide collection, for which you should see the

Administration Manual. Two other buttons on the pop-up ask to inhibit the automatic pop-up of collection

windows and to view collected data in a separate entry in the choice tree.

If the collection is stopped for any reason or the pop-up has been inhibited by choice, it may be restarted by

selecting Data->Local Collection and using the pop-up.

Only one central instance of clockwork can run, but there is no limit to the number of user instances running

specific set up collection jobs. See the section later in this document about starting custom clockwork

instances for you own data collection projects.

 4.2 Stopping

Using ghabitat, select Data->Local Collection from the menu bar.

A pop-up similar to the one below will appear

From this window, one can stop collection, continue with it or change ghabitat's auto-collection setting (see

above). To continue with no change, click 'Continue collection' or press the Esc (escape) key on your

keyboard. If collection is stopped then it may be restarted again with the same menu sequence.

 4.3 Status

To check if collection is running locally, select Collect->Local Data from the menu bar. As shown in the

image from the Stop Collection section above, the pop-up will show if the collection process is running and if

so, who started it, when and its process ID.

To exit without changing the current state, press the Esc (escape) key on your keyboard or click 'Continue

collection' (or 'Don't collect' if not running).

 5 Graphical Tools
Habitat's main graphical tool is ghabitat, which can be started by typing ghabitat on the command line or

selecting habitat from the start button of the graphical desktop. Data collection needs to be started from the

GUI or preferably at system level using clockwork directly. The manual pages towards the end of this user

guide show the options that can be used for launching both ghabitat and clockwork the collector. Data

collection is discussed in the section above.

When running normally, a display similar to the one below will be seen, which shows around 12 minutes of

data.

 5.1 Data Visualisation

All manner of data can be collected by habitat. However, the default information displayed in the ghabitat file

is shown in the table below

Uptime When the system was last booted, plus some other information

System Key system information, containing the processor and memory statistics.

Symbols Entries in the form of key-value pairs that all operating systems generate

when they configure

Storage Storage capacity and performance

Network Network performance

Interrupts Hardware interrupts

Events The events generated by pattern watching and crossed thresholds

These choices may be found by following the following path in the choice tree:

habitat->this host->perf charts

More data is collected and this can be seen by selecting the data node in the choice tree. This view is low

level and is used when it is important to see uninterpreted data.

An detailed list of the performance metrics and their explanation is help in an appendix

 5.1.1 Data In Charts or Graphs

In the current version of habitat, performance data is charted when perf charts is selected from the choice

tree. Once selected, the performance data choices (shown in the section above) appear as branches.

Once the leaf node in the choice tree has been chosen, the visualisation pane will change from the current

display (which may be the splash screen) to a chart holding data values and a set of visualisation and

navigation controls. A default set of data curves are displayed, which may be changed by using the controls

to the right of the chart area. The manipulation of the data is explored below.

Please note that the chart will be updated periodically whilst it is displayed. The frequency of update depends

on the time scale chosen and can be updated manually with the ^L key or the menu bar choice View-

>Update View. Data is appended to the current view.

 5.1.2 Data In Tables

In the current version of habitat, performance data is displayed in a table when perf tables is selected from

the choice tree. Once selected, the performance data choices (shown in the section above) appear as

branches. This is identical to the display of data in a chart as shown above.

Once the leaf node is chosen, the visualisation area switches to a tabular display of the selected data.

Moving the mouse pointer over the column title will cause a pop up to appear with an explanation of each

data attribute (where given).

The data can be panned horizontally and vertically as expected using the scroll bars.

 5.1.3 Data In Row Popups From a Table

Some times it is useful to see a row of data as a column, especially when dealing with many wide columns.

By double clicking on a row in the tabular display of data, a column of data is displayed in a separate pop-up

window.

Additionally, it is also useful to see one row of data whilst looking at another, which may not be easy to out of

the table context.

Pictured below is an example from the system probe, where two popups taken from different rows are

shown next to each other.

 5.2 Data Navigation

 5.2.1 Finding Data Sources

The choice tree, held in the left-hand area of the ghabitat tool, represents many of the features of habitat and

each time one is selected, the visualisation area will be changed to show that data.

The first level of organisation is shown in the diagram below, showing a compressed view of the tree's top

level.

The nodes are as follows:-

this host Information coming from the local host, via the network connection to clockwork. If

clockwork has been configured to disable network requests (clockwork -s) or if a private

instance is use, then this node will not be populated and the data may be accessed by file

under my files

my files Files that can be read by ghabitat will be placed under this node. Open them with the menu

bar option: File->Open and formats that can be read include ringstore, CSV and plain text.

Files may be closed with File->Close from the menu bar and will be remembered next time

ghabitat is run

my hosts Hosts accessed using the option File->Host from the menu bar will be placed under this

node. Two type of access are possible: direct, which gets data from the monitored machine

and repository, which obtains data indirectly from an archive

repository If a repository is configured (see appendix and Administration Manual) then this node will be

populated with the organisational hierarchy taken from the harvest repository. Navigate

through the organisation tree to find the host entries

this client The workings of the ghabitat client being used. Currently holds the configuration, log routes

(log destinations) and the logs directed to the local client

Each of these choice tree paths will reach a data source, such as a file, a host, repository entry or meta

source. If the choices are dynamic (itself driven by data), then the entires are coloured blue and may be

updated with View->Update Choice option from the menu bar or the F9 key. Automatic updates will occur

periodically.

 5.2.2 Source Exploration

Each data source provides arbitrary entries, which may be used to expand the functionality of habitat.

However the following section describes the sources which identify themselves to ghabitat as conventional

and have meaning to the habitat suite.

The tree above shows a typical list of the sources visible from each full data source, such as a ringstore. In

the example above, it is the local machine that runs your ghabitat and named this host. Each release of

habitat is likely to alter the organisation of choices as functionality is optimised. An explanation of the nodes

are as follows:-

uptime The amount of time that a system has been running

perf charts Performance data visualised by charts

perf tables Raw performance data shown in tables

events Events from monitoring data for patterns or thresholds

logs Logs generated from the running of data collection jobs

replication Replication state and logs when enabled with a repository

jobs Job table, used for clockwork

data Raw view on all the data stored

Not all the nodes at this level will be populated. For example, if there was no replication taking place, the

entries for it would not appear in the tree. If the ringstore was not generated by the standard clockwork job

table, then it is likely that only the performance data would be shown; the job table causes many data

sources to be run and collected in the same datastore. Flat or CSV will typically have only two choices,

corresponding to charts and tabular viewing.

Once a source has been selected, the section below shows how the view can be tailored to show the correct

data set.

 5.2.3 Changing Timescales

Each row collected by habitat has an associated time stamp. When examining the data source, ghabitat pre

select typical data views based on time scales. These are typically values such as 5 minutes, 1 hour, 24

hours, 7 days, ranging all the way to 30 years. The more history there is in the data source, the great the

time scale to display it.

When one of these time scales nodes are selected, a corresponding chart or table view will be drawn.

Clicking on different time scale nodes in the choice tree will cause different amounts of data to be displayed.

Note that the greater the time viewed, the longer it will take to retrieve from the source, the more memory

used and the busier the display.

See the Zooming section to customise the views or look at interesting parts of the chart.

 5.2.4 Selecting Curves

When viewing a chart, the visualisation area is split into three boxes, all of which are resizeable. The main

one contains the chart itself, framed by a heading and rulers showing time and value. The smallest box

contains buttons used for zooming and scaling (see the later section), leaving the remaining box which

contains the curve list.

The curve list is a scrollable set of buttons that control what is drawn on the chart. Each column in the

collected data may be turned into a plotted line, providing it has numeric values. Hovering the mouse pointer

over a button will return the attribute's information in a tooltip. Clicking on a button changes its colour and

icon and a line is drawn on the chart in the corresponding colour.

Main visualisation

area containing a

system chart

Chart title taken

from the selection

of the choice tree

The time line

contained on the

horizontal axis

List of curves in a

scrolling list; click

on one to draw the

curve and use the

same colour for the

line and button

Detachable panel

containing zoom

and extra widget

buttons

Changing the position of the

horizontal scroll bar shifts the

whole chart in time and changes

the time line

To remove the line from the drawing, click the button to deselect.

When a standard choice is selected, a default set of curves are drawn. However, when the curve selections

are changed, it will be remembered when the choice is shown again or the same view is shown in another

data source.

 5.2.5 Zooming and Panning Graphs

One of the most useful parts of ghabitat is the ability to zoom into a displayed graph and for the rulers to be

intelligently redrawn at the right scale.

There are two ways to achieve this:-

1. Drag the mouse pointer over the interesting part

of the chart whilst pressing the left mouse

button. A box will be drawn over the area which

should be clicked inside, again with the left

mouse button. This will redisplay the graph

using the dimensions of the box. The current

aspect ratio will not be maintained, so that it is

possible just to expand the time scale, whilst

leaving the full range of values on the y-axis

2. Alternatively, click on one of the two zoom

Illustration 7: Before and after: drawing a new curve on a chart with an existing set. A

colour is automatically assigned and used to draw the curve line and tint the button for

identification

Button coloured the

same as curve

(automatically assigned)

Curve drawn on

same set of axes with

the same scale

buttons in the Zoom & Scale box. These will

increase each dimension (the x or y axis

independently) by around 50% and position the

display in the middle of the previously displayed

values.

Once the display is zoomed, one may pan around the chart using the horizontal or vertical scrollbars.

Selecting or deselecting curves whilst zoomed will not cause the scale or position to be reset: new values will

be superimposed with out resetting the current view.

To zoom out, either click on the right mouse button, or select the zoom out button. Either of these will zoom

out of the current view in both dimensions by about 100% each time. Clicking the right mouse button or

zoom-out GUI button:

several times will result in the display being returned to the full view of the chosen time scale.

 5.2.6 Adapting Curves

Some attributes have such large values that the y-axis is unable to cope with the sheer length of the labels.

Alternatively, if two attributes are drawn with radically differing values, all the contours of the smaller valued

curve will be lost in a flat-ish line at the bottom. Examples are shown below

For both these situations, ghabitat has the ability to alter the scale and offset of any curve, using the formula:

Illustration 8: Two examples of problems when using curves with large values. The image

on the left showing a flattening of the smaller valued curve and on the right being too big to

place values on the y-axis

Problem: Drawing a big curve with

a small one on the same chart will

tend to flatten the contours of the

small unless adjusted

Another problem: A set of data

with big enough values have

their figures suppressed on the

y-axis as they can't fit in

y = m x + c

which most readers will remember from school mathematics: m is the scale, c is the offset on the y-axis. To

activate, click on the 'extra fields' button in the Zoom & Scale box:

This will cause the curve selection list to expand, similar to the list below:

Locate the scale field of the curve that you wish to make smaller, and type in a magnitude less than 1.0 or

use the pull-down to select a predetermined power of 10 (initially the best approach). The graph rescales

with the values of the big curve reduced to manageable proportions. Other curves squashed down at the

bottom are able to expand and show their contours compared to the giant.

The diagram below shows one of the previous examples but scaling the pageout data by 0.01 (dividing it by

100). The two curves fit into the same scale and can be displayed on the same chart without loss of detail.

In illustrating performance issues, it is very useful to show a small scale item such as % cpu utilisation

(maxima of 100) on the same chart as memory usage (which may have a maxima of 32,000). Scaling the

memory to a factor of 0.01 or 0.001 (100 or 1,000 times smaller) would achieve this and is shown in the

example above.

In addition to scaling, an offset may also be applied to the values of the curve. The offset moves the curve

vertically against the y-axis.

Clicking on the 'less fields' button: hides the scale and offset columns from the curve list.

 5.2.7 Custom Graphs

Custom Graphs are not currently in operation

 5.2.8 Selecting Instances

Some rings involve multiple instances, such as storage or networks where the data describes multiple

devices. For example, individual network interfaces or storage devices. When these rings are displayed, the

selection list is joined by a scrollable instance list or check boxes. By default, the first instance is selected.

Selecting additional instances splits the chart display area evenly and draws graphs of the chosen items in

each. Clicking on the curve selections draws and erases the lines on all the split graphs simultaneously.

Instance graphs are removed when the corresponding instance is deselected.

 5.3 Import and Export

The conventional format for information within ghabitat is the ringstore, but data can also be directed to other

formats and uses.

 5.3.1 Email

When data is displayed with a graph or in tabular chart form, it can be sent to other users by e-mail. The

Illustration 9: Two instances are chosen from a storage ring: / (root) and /home, resulting in

two sets of graphs. Each is drawn with two curves: kread and kwritten to show the volume

of data transferred in both directions

format will be Comma Separated Values (CSV) or Fat Headed Array (FHA) with options to alter

information's appearance. Select View->Save Viewed Data... from the menu bar and the following pop-up

will appear:

Two formats are currently available from the Format: widget as described above. The selection boxes in the

Headers: line govern the printing of column names and info lines, the latter of which may be multiple lines

terminated with the special '--'. Columns: select the printing of the _time and _seq columns for time stamp

and duration. The To: and Cc: fields should be valid address lists, Subject: will identify the email.

To send the email of data, press Send and ghabitat will use the system specific email command to dispatch

the data. The progress of the operation is shown in a status line above the buttons. The window stays up to

deal with any problems and can be dismissed with the Finished button.

 5.3.2 External Tools

The data sent by e-mail above can also be forwarded to an external application, such as a spreadsheet

application or other visualisation package. Select this features with View->Send Data to Application... from

the menu bar. Data is sent using a pipe to stdin or the launched application.

The data fields are identical to the e-mail pop-up above, with the exception of command: which should be a

standard command line valid on the host system. Progress will appear in the status line above the buttons

and the pop-up is dismissed with the Finished button.

 5.3.3 Interchange Files

Data from ghabitat may be simply exported to a file, using the pop-up selected by View->Save Viewed

Data...

Data is written to a file name with the Save button, showing the progress in the status bar and dismissing the

pop-up with the Finished button.

 5.4 Data Files

Several type of data file that may be read and written in ghabitat. This section details the operations that can

be carried out with them.

 5.4.1 Saving Data in Files

Currently, two basic formats may be saved: Fat Headed Arrays (FHA) and Comma Separated Values (CSV).

However, each can be modified to look similar to each other by customising the headers or columns. The

major difference between the two is that the FHA's values are separated by a single tab character (\t or ^I)

not a comma.

Data should first be selected from the choice tree and scoped using the time scales. Regardless of the

curves or instances being saved, all data covering that time will be used. Then three options are available to

save data, all access from the menu bar.

1. View->Save Viewed Data...

2. View->Send Data to Application...

3. View->Send Data via E-mail...

Each of these options provide the opportunity to customise the appearance of the written data, then ask for

specific ways in which to output. These forms are shown and described in the sections above.

 5.4.2 Opening Data Files

Files may be opened for browsing using the File->Open... option from the menu bar and the resulting file

chooser pop-up. An attempt is made to load the file using several different formats, starting with the one

containing the most information, moving to the next one if the load fails.

The following formats are supported:

Ringstore Conventionally end in .rs and contain many rings of time store data. The rings will

appear under the file name label in the choice tree

FHA Fat Headed Array is an enriched version of a CSV files and is treated as a single

ringed data source. The files conventionally have the extension .fha.

CSV Comma Separated Value files are treated as single ringed data sources. The files

should conventionally end in .csv and the alternative .tsv if the values are tab (\t or

^I) separated.

Text If ghabitat is unable to scan the input file as a table, it will treat the contents as plain

text and allow its simple visualisation.

All files read in this way will have an entry created for them under my files in the choice tree. Each file types

gets a different icon to help distinguish the types.

 5.4.3 Closing Data Files

To close a file of any type, select File->Close... from the choice tree. This will display a file de-selection

window, containing existing file loads.

Click on the line containing the file to remove and then the Close button. This will remove the file from the

choice tree and dismiss the window from view.

 5.5 Data Access from Peer Hosts

Data from other instances of habitat running on other hosts may be mapped into the choice tree, in addition

to local data (under the node this host) and file sources (under my files). Several of these options are also

explored in the section 'Finding Data Sources' earlier in this manual.

 5.5.1 Peer Data over Filesystem

In addition to historic or experimental data, files may also contain dynamic data that are periodically updated

from clockwork instances or direct insertions (from habput for example). If data is created by other systems,

then the information may be shared using a file sharing protocol such as NFS or CIFS (SMB). The producer

writes to the file on their system, the data is held on a file server and ghabitat on another system reads it.

Data created in this way are loaded in ghabitat like static files, using File->Open... and made available under

the label my files. They are removed using File->Close.... File based dynamic data can only be stored in a

ringstore format.

This method of access is useful, but can suffer from bottlenecks due to file locking. When the produce stores

the data, the file will be locked momentarily. Similarly, then the reader access the file, it is unavailable for

writing. Consequently, it is most useful for slower data collection or infrequent ad-hoc use.

 5.5.2 Peer Data over Network

The recommended way to access data from peer systems, is by network which uses an http based protocol.

From ghabitat, remote systems can be attached by using the option File->Host... from the menu bar. From

the pop-up (shown below), type the network host name and select the direct option.

This will attach the storage to the choice tree under the my hosts node. From here one can navigate the

choices like it was on the local machine.

 5.5.3 Data from Repository

The disadvantage with direct access is that the machine subject to monitoring will have to spend part of its

time servicing the clients that have asked for performance data. Instead a more considerate option is to

query the repository instead, which obtains data indirectly from the host. The current repository is provided

by System Garden Harvest, and is an archive of Habitat's replicated feeds augmented with directly imported

data and computed information. The use of a repository is advised for medium or larger sites.

Repository data is attached in the same way as direct access above, except that the repository button

should be selected. Again, the host is placed in the choice tree under the my hosts node.

 5.6 Graphical Viewer Information & Configuration

The graphical tool itself is configurable and uses the same system of control as other tools in the habitat

suite. This section shows how configuration is used by the viewer and how to display information on this and

the state of the ghabitat application.

 5.6.1 Configuration Files

All habitat programs read the same set of configuration files before they start, and for most users the

~/.habrc file is the most convenient to use.

(Configuration may also be set on the command line and by administrators at multiple levels, which may

account for behaviour not requested by a user. For more information of the global configuration of habitat and

how to control it, see the Administration Manual.)

The first line in ~/.habrc is the magic number (actually a string) that identifies the format: it must be set to

habitat 1 to show habitat its version. The remainder of the file contains settings in the form of simple

assignments against property names. The values may be lists, single values and an implied positive or

negative.

The following are the possible formats accepted by the configuration:

blah blah blah Comments are introduced with '#' and finish at the end of the line; they may follow

any directive

Prop Prop is set to true (1)

+Prop Prop is set to -1

Prop val Prop is set to val

Prop=val Prop is set to val

Prop val1 val2 val3 Prop is set to the array (val1 val2 val3)

Care should be taken when manually changing the file, as the ghabitat application will also write to the file

when exiting or carrying out configuration tasks. To be safe, it is advisable to edit the file when ghabitat is not

running. If that is not possible, you should save the contents before ghabitat exits or before it starts. The

application will only update the lines that match the property being updated, leaving everything else alone

(comments, user settings, etc).

Some common values are shown in the Administration Manual. You may be asked to add values on the

advice of an administrator or System Garden support.

 5.6.2 Data Source History

When ghabitat exits normally, it edits the personal preference file .habrc in the user's home directory

(~/.habrc). This information is used to reload files and hosts on a later invocation of ghabitat. It updates the

lines containing the following keys:

ghchoice.myfiles.load The list of files that should be loaded the next time ghabitat is started

ghchoice.myfiles.list The list of files that should be provided for convenience in a pull-down menu

when selecting files

ghchoice.myhosts.load The list of hosts that should be loaded the next time ghabitat is started

ghchoice.myhosts.list The list of hosts that should be provided for convenience in a pull-down menu

when selecting files

All other lines are left alone, allowing them to be used for personal configuration (see section below).

Currently, if ghabitat is terminated abnormally, then the configuration file is not updated.

 5.6.3 Viewing Current Configuration

Under the choice label this client will be three choices: configuration, log routes and logs. This cluster of

choices shows the current state of the ghabitat viewing tool, as shown in the image below.

Selecting this client->configuration from the choices will display the current configuration of the client in the

visualisation area to the right. Configurations are compiled from several sources and are a mixture of

personal preference and system-wide directives augmenting ghabitat's internal settings. The mechanism is

discussed in an appendix in this document and also in the Administration manual.

Configurations are displayed in a three column table: name, argument and value. For scalar values (for

example, a single string or integer) the argument value is blank. However, when values are arrays, multiple

rows are used with the same name and the argument column is used to distinguish between them. An

example configuration is shown below.

In the example, the directive gtkaction.curves has a nine element array as a value: pc_idle, pc_nice,

pc_system, ... etc.

The specific configuration of ghabitat is also available by running the application with the diagnostic (-d) or

debug (-D) mode on the command line. In these modes, logging is set to be more verbose (diag or debug

level) and output sent to stderr, which is overridden from the normal settings. The ghabitat manual page in

the appendix has more information.

 6 Text Terminal Tools
As a substitute for ghabitat, the habitat suite also contain a curses-based utility called track. It purpose is to

provide an assisted method of data browsing using only dumb-terminals or their emulators such as xterm,

kconsole or gnome-terminal.

 6.1 Track

Track is not currently distributed. Please check its status with System Garden.

 7 Command Line Tools
A number of command line utilities are provided in the standard habitat distribution. These address getting

data in and out of habitat's various storage systems, maintaining ringstores and being able to get data or run

the suite's methods on an ad-hoc basis.

This section describes each tool and their function. Their manual pages are held separately in the appendix.

 7.1 Common Arguments

Where possible, all the command line utilities share a common set of arguments. They are:

-c croute Append user configuration data from croute (route addressing format), rather than the default

file ~/.habrc. For example, -c file:cf.dat would load configuration from cf.dat.

-C cfcmd Append a list of configuration directives from cfcmd, separated by semicolons. For example,

-C “nmalloc=1;dummy=6” would set the configuration variables nmalloc to 1 and dummy to

6

-d Place command in diagnostic mode, giving an additional level of logging and sending the text

to stderr rather than default or configured destinations. Used for clockwork in daemon mode,

will send output to the controlling terminal

-D Place command in debug mode. As -d above but generating a great deal more information,

designed to be used in conjunction with the source code. Also overrides normal outputs and

will send the text to stderr. Used for clockwork in daemon mode, will send output to the

controlling terminal

-e fmt Change the logging output to one of eight preset alternative formats, some showing additional

information. Fmt must be in the range 0-7, with format 3 being concise but useful. The formats

are:-

0. everything!! time, severity, path, process ids, file, function, line, origin, code, text

1. upper case severity letter, text

2. severity, text

3. justified severity, text, file, function, line

4. upper case severity letter, short date time, binary name, file, function, line, text

5. time, severity, binary path, pid, file, function, line, code, text

6. long time, epoch time, severity, binary path, pid, tid, file, function, line, origin, code, text

7. justified severity text, justified file, line, function, text

-h Print a help message to stdout and exit

-v Print the version to stdout and exit

If a command does not work as expected, the user may be directed to run it with the -d or -D flags to help

diagnose the problem.

 7.2 Data Addressing

Most of the commands use route formats to address their data. The format of a route is similar to URLs and

has been extended to cope with the formats of data storage used in habitat. It is fully explained in the

concept section at the beginning of this guide.

file:///cf.dat

 7.3 habget

The utility habget opens a route specified on the command line, and redirects the output to stdout. As an

example, the following outputs the data collected by the system probe (the data is collected at a 60 second

interval):

$ habget rs:/var/lib/habitat/myhost.rs,sys,60

load1 load5 load15 runque nprocs lastproc
1 min load 5 minload 15 min load num run procs num procs last proc run info
4 4 4 "" "" "" max
abs abs abs abs abs abs sense
nano nano nano u32 u32 u32 type
--
0.00 0.00 0.04 1 142 5895

The data returned has been shortened & edited for brevity. In reality, the info strings are longer and there are

many more columns.

The most recent sample is returned, which in the example above is a single line. To get more data, use the

additional route qualifiers t= or s=, which explicitly specify the time or sequence. For example, to return

everything in the sys,60 ring, use

rs:/var/lib/habitat/myhost.rs,sys,60,s=0-

Which will return all the records from sequence 0 on to the end. When explicit time and sequence

addresses are used, the output will be augmented with a sequence, time and duration column

(_seq, _time and _dur). All routes are valid addresses, including http: and sqlrs:.

 7.4 habput

The utility habput inserts data onto a route for storage in a ringstore or SQLringstore. The following example

reads the table headed tom dick harry and stores it in the ring called myring with a 0 second duration

contained in the ringstore file myfile.rs.:

$ habput rs:myfile.rs,myring,0 <<END
tom dick harry
--
1 2 3
4 5 6
END

A ring of 0 duration is the convention for data with irregular frequency. Sending the data to a ringstore causes

it to be scanned for a table structure and if passed, will append the data to the ring.

If there is an error in the format of the table or in the address syntax, then the ring will generate an error and

no data will be stored. Appended data is given an ascending sequence number and will be data stamped.

Rings may be implicitly created with this utility, in which case a default size and description will be given

(which can be overridden with the -s and -t switches). The default ring is circular with 1,000 slots; when

sequence 1,001 is appended, the oldest will be lost. To create a queue rather than a ring buffer, use -s 0.

Rings may be manipulated (size, name, description, etc) using the utility habrs, which is described in the

Administration manual.

 7.5 Clockwork & killclock

The commands clockwork and killclock are used to start and stop the collection daemon on each machine.

(Unless habitat is installed as a system service, see /etc/init.d/habitat below). To start a shared collection

service for the system, run clockwork on its own. It will become a background daemon process, requiring to

be stopped with the program killclock, also with no argument.

If a collection process is not running when ghabitat is started, then a pop-up will ask if you wish to start one

(see sections above). In this case, the data file will be owned by the starting user although the network

service will still be available.

If a user wishes to run their own data collection in addition to system collection, they can do so by providing a

custom job table to clockwork, like so:

clockwork -j jobroute

Jobroute must be a route but typically is a file created for the specific situation. Job tables are described in

the Administration Manual, and describe the probes to run, their frequency and where their storage is

located. The -j flag does not daemonise and stays attach to the controlling terminal, so that it may be

controlled and stopped like a normal shell level process.

 7.6 /etc/init.d/habitat

When habitat is fully installed as a system service or daemon, a single script manages the starting and

stopping of clockwork. It is automatically run on on the machine's start-up.

As root, one can manually control clockwork collection using the conventional command syntax:

/etc/init.d/habitat [start | stop | status]

If this is the case in your installation, you do not need to manually start a personal instance of clockwork

unless you wish to run specific jobs.

This command is covered in greater depth in the Administration manual.

 7.7 Other commands

The remaining commands are covered by the Administration Manual:-

habedit Edits configuration tables within ringstores

habmeth Runs clockwork methods from the command line

habprobe Runs built-in data collection probes from the command line

habrep Forces a replication cycle to take place

irs Interactive ringstore utility, allowing administration of the data held in ringstore files

 8 System Performance
Data gathered by clockwork's built-in probes are designed to aid in capacity planning and problem

resolutions. Usually, that relies the trend in consumption of major resources: processor, memory, storage

and networks. However, other minor indicators can also be used: highly system specific but very important.

For certain situations, log monitoring and event recording are also important, especially when showing data

coincidence.

 8.1 Indicators

The main indicators of capacity usage: processor, memory, storage and networking are handled in a very

similar way across Unix-like systems (although memory management will vary more than other resources).

In all systems, these measurements can be represented in a similar way and are the primary indicators of the

capacity of a given machine. However, these should always be read with the in conjunction with the system

specific indicators.

 8.1.1 System

The processor and memory statistics are collected by the same probe and appended into a ring named sys,

which appears as the leaf node system in the choice tree.

A full list of data that collected (at the time of writing) is held in an appendix, however a few notable indicators

are described below.

Habitat's sys probe calculates a %work value (0-100 range), which indicates how much time is spent

processing in all categories. In Linux this is %user+%system+%nice (user time, kernel time and low priority

user time). In Solaris, this is just %user+%system.

%idle in Linux 2.4 shows what proportion of time is left over after processing has been completed; in Solaris

and Linux 2.6, one needs to add %idle+%wait together to get the same figure. %wait stands for wait I/O, the

amount of time that processes wait on blocked I/O.

The indicators load1, load5 and load15 report the 1, 5 and 15 minute load average computed by the Unix

kernel. This is a traditional value of overall load that almost all Unix-like operating system report and is an

exponential decline function on the number of runnable processes

Users of habitat should refer to operating system specific texts to better understand the meaning behind the

indicators.

 8.1.2 Storage

Storage statistics are collected by the io probe and appear as storage under the choice tree. Both capacity

information (how full your disks are) as well as performance information is given in the same probe

A full list of data that collected (at the time of writing) is held in an appendix, however a few notable indicators

are described below.

Capacity information is given by size, used and reserved, which fits the Unix model of reserved storage.

%used is also calculated by the probe to shown what proportion of (used-reserved) taken. 100% used means

all user space on the device has been taken, leaving only the reserved for administration working area.

Performance information is given by read and write operations and storage transferred. For systems that

support it, service time for read and write is also offered, which can be very helpful in working out service

levels.

The storage ring holds multi instance data, that is, each device can provide the same measuring

characteristics if they are available. In ghabitat, this manifests as an additional scrolling list to select the

devices to display (as described above).

 8.1.3 Network

Network data is collected by the net probe and appears as network in the choice tree.

A full list of data that collected (at the time of writing) is held in an appendix, however a few notable indicators

are described below.

Data collected is split between read and transmit statistics, known by their identifier prefixes rx_ and tx_.

Typical indicators include packets (a measure of throughput), total bytes, errors (malformed data), and

collisions (high for busy shared Ethernets), etc.

A system has multiple interfaces, even if one of the is a loopback (typically lo0). Thus, when displaying

network data in ghabitat, the multi interface mode operates and multiple interfaces may be selected for

drawing.

 8.1.4 Other Indicators

Other than the probes that collect the primary indicators, habitat also collects other data.

Four co-operating probes, named up, down, boot and alive, collect availability data which is displayed in the

choice tree under the label uptime. Other than collecting some system specific information, the probes show

when the system was last booted and create a history of down time that can be used in service levels.

Each operating system has a set of parameters which describe the operation of its kernel and the

configuration. This is collected by probe called name which presents it data as symbols under the choice

tree. The probe runs each time that clockwork started to collect the current configuration in the form of a

simple key-value list.

Hardware interrupts are collected by a probe named intr and presented as interrupts under the choice tree.

It shows interrupts of various sorts against real or synthetic devices. This measure can be quite system

specific.

 8.2 Adding to the standard data

New data is easily added to habitat and is covered in Administration and Programming manuals.

Conceptually, once the chosen data is collected in the correct format (FHA generally), it needs to be

appended to its own ring in a habitat data store (using habput or programmatically using the route interface).

Once there, it can be displayed using ghabitat in tabular or graphical form under data in the choice tree.

Ringstores should be used unless harvest is installed, when SQL ringstore (sqlrs:) also becomes an option. It

is also possible to use a ringstore and replicate to sqlrs: which is another configurable process and one

employed by habitat as the most convenient method.

 8.2.1 Synthesising New Values

In addition to data that is recorded directly to a ring table following its measurement, a collecting probe may

also synthesise its own values. This may be to abstract a measurement from system specific indicators or to

make a more useful measurement, usually combining several native values.

This data is recorded at the same time as the native values in its own column, so that it shares the same

sample time and sequence. However, it is advised that synthetic data is indicated as such in the info field

describing the column.

In the system probe, %work is an example of synthesised data.

 8.3 What is Abnormal?

This User Manual does not attempt to provide a guide to interpreting performance characteristics, which is a

significant subject in its own right, with many tests dedicated to it.

However, certain things to watch out for include: in the system ring, prolonged use of processors (unless by

design), high paging and any significant swapping. In the network ring: high error or collision rates, and in the

storage ring long service times or high usage resulting in little free space.

 8.4 Further Reading

 9 Events
In addition of collecting tabular performance data, habitat also has the ability to monitor data and files for

patterns and thresholds, executing arbitrary jobs as a result. If the jobs generate additional logs, then it

provides a complement for polled tabular data and is able to put these details into context.

It is also possible to use this mechanism to execute external processes, send email, pager or SMS

messages or to carry out a specific set of data collection. In this way, habitat can change its job profile

dependent on the statistical information it finds.

 9.1 Event Queue

Events in habitat are used for creating jobs and are the culmination of watching data for patters, threshold

crossing or direct injection.

When an event is raised by watching patterns or thresholds, it is appended to a single event queue. An event

tracker job (using the clockwork method event) picks up new instructions and executes them. Once

executed, the new state is stored so that events are not replayed if clockwork is restarted.

All job methods available in clockwork's job mechanism may also be used in event processing. See the event

table format later in this document or the Administration manual for more details.

 9.2 Watching Jobs

Data is watched by a set of tasks held in the clockwork job table. Each has a checking frequency and

associates a set of named watch sources (see below) with a set of named patterns and if matched, their

actions (see below).

The job method called by clockwork is pattern, which takes two arguments. This first is the patter-action route

list, a route to a list of patterns and the second is the watch route, a route to a list of routes to watch.

When the pattern is matched and the embargo conditions allow, then an event is composed using

information from the pattern-action table. This comprises a set of instructions

See the administration guide for more information.

 9.3 Watched Sources

The sources that are watched are held in a simple list of routes, conventionally called watched,0 (fully

rs:<hostname>.rs,watched,0). This table is normally made available in the choice tree under events-

>watched sources. Multiple named watch lists can exist, used only when referred to by a watching job.

When ever a watch list is updated, it will be reread by the watching process without the need to restart

clockwork.

 9.4 Pattern-Action Data

A table of pattern-matching data is stored in a route conventionally called patact,0. This is made available

under the choice tree events->pattern-action. Multiple named tables can exist, used only when they are

referred to by a watching job. When ever a pattern-action table is updated, it will be reread by the watching

process without the need to restart clockwork.

The table has the following columns:

Pattern The regular expression to look for as a pattern, which should normally match a

single line. Each match is considered an event.

Embargo time The number of seconds that must elapse after the first event before another event

may be raised of the same pattern from the same route.

Embargo count The maximum number of identical pattern matches that can take place before

another event is raised for that pattern and route.

Severity How important is the event. One of: fatal, error, warning, info, diag, debug

Action method The execution method of the event

Action arguments The method specific arguments that aid in writing the event

Action message The message template used to describe the event when it is sent on. It may contain

special tokens of the form %<char> that describe other information about the event.

If the embargo time is reached, then the time is reset. If the embargo count is reached, then the count is

reset.

The action message is used to form describing text, to be sent to the method and argument set. The

methods are the same as those supported by the clockwork's job table.

 9.5 Thresholds

Thresholds are not yet available.

 10 Administration
An Administration Manual exists that explains how to configure and manage the flexibility in Habitat.

However, some administrative information is useful for users to understand and some select topics are

briefly covered below.

 10.1 Replication

Habitat has the ability to replicate its data to a central repository (and collect data waiting for it). The

replication is carried out by the a job within clockwork, which updates two tables once replication work has

completed.

The state table (called rstate,0 in the ringstore) is presented as replication->state in the choice tree. It

shows the state of replication rings and the observed sequences with their times locally and remotely.

Log messages as a result of the replication process are shown under replication->log in the choice tree

(rep,0 is the ringstore). These are time stamped messages showing information and errors in replication

process.

 10.2 Logs & Errors

All jobs in the clockwork collection agent have the ability to generate error messages (like stderr in Unix). By

convention, all jobs use the same ring to store their errors (the ring err,0), and this is presented under the

label logs->errors in the choice tree. The log choices for the current host are shown below (habitat->this

host->logs->errors->err,0).

Additionally, some jobs use the same ring to store non-error logs, although this is a smaller number than

combine for errors. The ring in this situation is log,0 and is presented as logs->log in the choice tree.

 10.3 Jobs

The collection agent clockwork uses jobs in a table to govern its activities. This is stored in a ring called

clockwork,0 and presented under the node jobs in the choice tree.

The columns and meaning of them are shown below:

Start The number of seconds after clockwork has started before this job should start. A value of 0

starts the job as soon as possible after running clockwork

Interval The number of seconds between successive runs of this job

Phase Not currently used

Count The number of times that this job should repeat. A value of 0 will repeat until clockwork is

terminated

Key The name of this job, useful for identification in logs

Origin A text description of the job's owner, useful in larger job tables and typically their e-mail

address

Result The route to which results should be sent (cf stdout in Unix)

Errors The rout to which errors should be sent (cf stderr in Unix)

Keep The number of slots to keep in both Results and Errors when creating the rings for the first

time. Ignored when the rings already exist

Method The job method, which at the time of writing may be one of probe, exec, sh, snap, tstamp,

sample, pattern, record, event or replicate. See the Administration manual for more details

Command The commands that are passed to the method

 10.4 Raw Data

All data recorded in ringstore are displayed in an unadulterated form under the data label in the choice tree.

Each ring name is represented as a node, underneath which are nodes representing different durations.

All samples are concatenated and broken into rime ranges for display as charts or tables. No consolidation of

sample durations takes place, unlike the standard views (such as this host->host data->system).

This is the only method for viewing non-habitat data held in ringstores inside ghabitat.

 11 Diagnostics
The ghabitat tool has the same logging & diagnostic mechanism as the rest of the habitat suite. Thus, if there

are issues habitat's deployment, it can often be diagnosed using tools present in the graphical suite. The

section below explains some of the features available to look at that information, which ideally should be read

in conjunction with the Administration manual.

 11.1 Log Configuration

Selecting this client->log routes shows a mapping of log severity to route. By default, this is normally set to

the following:-

There are six severities, ranging from fatal to debug; nosev is a special severity conventionally discarding

any inputs.

The route column indicates which route will be used to send or store log information. In the screen shot

above, only two are used: none and gtkgui, both of which are route drivers without addressing. None

discards any logs sent to it and in the example above, any messages less important than 'info' are thrown

away. Gtkgui is a special driver provided by ghabitat that routes message logs into the graphical

environment.

The log route can be customised by setting directives on the command line or in configuration files. For

example, it may be useful to send logs to stderr or to a file (with the address file:filename).

 11.2 Collecting Less Severe Logs

In the default configuration, only logs of severity 'info' and above are collected by the application for

displaying in the main viewing area or the popup window. To collected the less severe logs 'diag' or 'debug',

use the menubar item Help->Logging level.

file:///filename

A High logging level will include diagnostic messages which are of general help in configuration errors. A

Higher level will include debugging messages, useful when diagnosing or debugging application issues.

Normal will return the collection of logs to the default state.

 11.3 Viewing Logs from the Choice Tree

Selecting the this client->logs node from the choice tree displays a list of all the log messages sent to the

gtkgui driver. By default, these are messages with severity of 'info' and greater but can be altered using Help-

>Logging level from the menubar, as covered above.

When selected a display similar to the one below is shown in the visualisation area

Arranged for optimum viewing is the time, severity and message of each log. However, each entry also

contains the origin of the message, useful for diagnosing problems with system garden support. This takes

the form of function name, file name and line number and is available by scrolling the list to expose the right

hand side. As with other tabular displays in the viewing area, double clicking on any row will display the row

contents in a column list inside a popup for greater inspection.

The most recent log message is always displayed in the status bar at the bottom of the main window.

 11.4 Dynamic Viewing of Logs from Statusbar

Logs can also be shown by clicking the 'bomb' button on the status bar which produces a popup that

holds log messages, similar to selecting it from the choice tree. However, in this window, the logs will be

updated dynamically, appending new ones as they are created. Also, the main viewing area is now free to be

used for the rest of the application, whilst still being able to see logs. This helps in problem diagnosis.

The dynamic logs window also has other features to aid understanding. Rows can be coloured depending on

the severity of the message: black for fatal, red for error and so on. For long log histories, messages can be

filtered for severity, independent of the collection of the logs. Finally, the log origin is also available by

clicking for detailed message, which will widen the list being displayed.

An example is shown below of detailed coloured logs, all of 'info' severity.

 12 Appendix

 12.1 Manual Pages

The following are a selection of the manual pages distributed with the habitat package, considered pertinent

to the User Guide.

 12.1.1 clockwork
NAME
 clockwork - collection daemon for the Habitat suite

SYNTAX
 clockwork [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhsv] [-j <jobs>]

DESCRIPTION
 Clockwork is the local agent for the Habitat suite. It runs as a dae-
 mon process on each machine to be monitored and is designed to carry
 out data collection, log file monitoring, data-driven actions and the
 distribution of collected data.

 The default jobs are to collect system, network, storage and uptime
 statistics on the local machine and make them available in a standard
 place. The collection of process data and file monitoring is available
 by configuring the jobs that drive clockwork. Configuration can be
 carried out at a local, regional and global level to allow deligation.
 One public and many private instances of clockwork can exist on a sin-
 gle machine, allowing individual users to carry out custom data collec-
 tion Data is normally held in ring buffers or queues on the local
 machine using custom datastores to be self contained and scalable.
 Periodic replication of data rings to a repository is used for archiv-
 ing and may be done in reverse for central data transmission.

OPTIONS
 -c <purl>
 Append user configuration data from the route <purl>, rather
 than the default file ~/.habrc.

 -C <cfcmd>
 Append a list of configuration directives from <cfcmd>, sepa-
 rated by semicolons.

 -d Place clockwork in diagnostic mode, giving an additional level
 of logging and sending the text to stderr rather than the
 default or configured destinations. In daemon mode, will send
 output to the controlling terminal.

 -D Place clockwork in debug mode. As -d above but generating a
 great deal more information, designed to be used in conjunction
 with the source code. Also overrides normal outputs and will
 send the text to stderr. In daemon mode, will send output to
 the controlling terminal.

 -e <fmt>
 Change the logging output to one of eight preset alternative
 formats, some showing additional information. <fmt> must be
 0-7. See LOGGING below.

 -h Print a help message to stdout and exit

 -v Print the version to stdout and exit

 -j <jobs>
 Override public job table with a private one provided by the
 route <jobs>. Clockwork will not daemonise, run a data service
 or take an exclusive system lock (there can only be one public
 clockwork instance). Implies -s and alters the logging output
 to stderr, unless overridden with the range of elog configura-
 tion directives.

 -s Disable the public data service from being run, but will con-
 tinue to save data as dictated by configuration.

DEFAULTS
 When clockwork starts it reads $HAB/etc/habitat.conf and ~/.habrc for
 configuration data (see CONFIGURATION for more details). Unless
 overridden, clockwork will then look for its jobs inside the default
 public datastore for that machine, held in $HAB/var/<hostname>.rs (the
 route address is rs:$HAB/var/<hostname>.rs,jobs,0, see below for an
 explanation). If it does not find the jobs, clockwork bootstaps itself
 by copying a default job template from the file $HAB/lib/clockwork.jobs
 into the public datastore and then carries on using the datastore ver-
 sion.

 The default jobs run system, network and storage data gathering probes
 every 60 seconds. It saves results to the public datastore using the
 template route rs:$HAB/var/<hostname>.rs,<jobname>,60 and errors to
 rs:$HAB/var/<hostname>.rs,err_<jobname>,60

 All other errors are placed in rs:$HAB/var/<hostname>.rs,log,0

ROUTES
 To move data around in clockwork, an enhanced URL is used as a form of
 addressing and is called a 'route' (also known as a pseudo-url or p-url
 in documentation). The format is <driver>:<address>, where driver must
 be one of the following:-

 file: fileov:
 reads and write to paths on the filesystem. The format is
 file:<file path>, which will always append text to the file when
 writing. The fileov: driver will overwrite text when first
 writing and is suitable for configuration files or states.

 http: https:
 reads and writes using HTTP or HTTPS to a network address. The
 address is the server name and object name as a normal URL con-
 vention.

 rs: read and writes to a ring store, the primary local storage mech-
 anism. Tabular data is stored in a time series in a queue or
 ring buffer structure. Multiple rings of data can be stored in
 a single ringstore file, using different names and durations.

 sqlrs: reads and writes tabular data to a remote repository service
 using the SQL Ringstore method, which is implemented over the
 HTTP protocol. Harvest provides repository services. Stores
 tabular data in a time series, addressed by host name, ring name
 and duration. Data is stored in a queue or ring buffer storage.

CONFIGURATION
 By default, clockwork will collect system, network and storage statis-
 tics for the system on which it runs. All the data is read and written
 from a local datastore, apart from configuration items which come from
 external sources. These external configuration sources govern the
 operation of all the habitat commands and applications.

 Refer to the habconf(5) man page for more details.

JOB DEFINITIONS
 Jobs are defined in a multi columned text format, headed by the magic
 string 'job 1'. Comments may appear anywhere, starting with '#' and

 running to the end of the line.

 Each job is defined on a single line containing 11 arguments, which in
 order are:-

 1. start
 when to start the job, in seconds from the starting of clockwork

 2. period
 how often to repeat the job, in seconds

 3. phase
 not yet implemented

 4. count
 how many times the job should be run, with 0 repeating forever

 5. name
 name of the job

 6. requester
 who requested the job, by convention the email address

 7. results
 the route where results should be sent

 8. errors
 the route where errors should be sent

 9. nslots
 the number of slots created in the 'results' and 'errors'
 routes, if applicable (applies to timestore and tablestore).

 10.method
 the job method

 11.command
 the arguments given to each method

 See the habmeth(1) manpage for details of the possible methods that may
 be specified and the commands that can accept.

DATA ORGANISATION
 Data is stored in sequences of tabular information. All data has an
 ordered independently of time, allowing multiple separate samples that
 share the same time interval. This data is stored in a ringbuffer,
 which allows data to grow to a certain number of samples before the
 oldest are removed and their space recycled. Throughout the documenta-
 tion, each collection of samples is known as a ring, and may be config-
 ured to be a simple queue, where data management is left up to admin-
 istrators.

 To limit the amount of storage used, data in a ring can be sampled
 periodically to form new summary data and stored in a new ring with a
 different period. In habitat, this is known as cascading and takes
 place on all the default collection rings. Several levels of cascading
 can take place over several new rings, This allows summaries at differ-
 ent frequencies to be collected and tuned to local requirements.

 See the habmeth(1) man page for more information about the cascade
 method.

DATA REPLICATION
 Any ring of information can be sent to or from the repository at known
 intervals, allowing a deterministic way of updating both repository and
 collection agent.

 This is implemented as a regular job which runs the replicate method.
 Data for the method is provided by configuration parameters which can
 be set and altered in the organisation. Thus the replication job does
 not normally need to be altered to change the behaviour.

 See the habmeth(1) man page for the replicate method and the formation
 of the configuration data.

LOGGING
 Clockwork and the probes that provide data, also generate information
 and error messages. By convention, these are stored in the route speci-
 fication ts:$hab/var/<host>.ts,log The convention for probes is to
 store their errors in ts:$HAB/var/<host>.ts,e.<jobname>.

 To override the logging location, use the range of elog configuration
 directives, or rely on the options -d, -D, -j, which will alter the
 location to stderr as a side effect. See habconf(5) for details.
 Probe logging is configurable for each job in the job table.

 The logging format can be customised using one of a set of configura-
 tion directives (see habconf(5)). For convenience, the -e flag speci-
 fies one of eight preconfigured text formats that will be sent to the
 configured location:-

 0 all 17 possible log variables

 1 severity character & text

 2 severity & text

 3 severity, text, file, function & line

 4 long severity, short time, short program name, file, function,
 line & text

 5 date time, severity, long program name, process id, file, func-
 tion, line, origin, code & text

 6 unix ctime, seconds since 1970, short program name, process id,
 thread id, file, function, line, origin, code & text

 7 severity, file, line, origin, code, text

FILES
 If run from a single directory $HAB:-
 $HAB/bin/clockwork
 $HAB/var/<hostname>.rs, $HAB/lib/clockwork.jobs
 /tmp/clockwork.run
 ~/.habrc, $HAB/etc/habitat.conf

 If run from installed Linux locations:-
 /usr/bin/habitat
 /var/lib/habitat/<hostname>.rs, /usr/lib/habitat/clockwork.jobs
 /var/lib/habitat/clockwork.run
 ~/.habrc, /etc/habitat.conf

ENVIRONMENT VARIABLES
EXAMPLES
 Type the following to run clockwork in the standard way. This assumes
 it is providing public data using the standard job file, storing in a
 known place and using the standard network port for the data service.

 clockwork

 On a more secure system, you can prevent the data service from being
 started

 clockwork -s

 Alternatively you can run it in a private mode by specifying '-j' and a
 replacement job file.

 clockwork -j <file>

AUTHORS
 Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
 killclock(1), ghabitat(1), habget(1), habput(1), irs(1), habedit(1),
 habprobe(1), habmeth(1), habconf(5)

 12.1.2 ghabitat
NAME
 ghabitat - Gtk+ Graphical interface to Habitat suite

SYNTAX
 ghabitat [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhsv]

DESCRIPTION
 This is the standard graphical interface for Habitat, including the
 ability to view repository data provided by Harvest.

 When the tool starts, a check is made for the existence of the local
 collection agent, clockwork. If it is not running, the user is asked
 if they wish to run it and what starting behaviour they wish in the
 future.

 In appearance, clockwork resembles that of a file manager, with choices
 on the left and visualisation on the right. If files or other data
 sources have been opened before, then their re-opening is attempted by
 ghabitat and will be placed under the my files node in the tree.

 See DATA SOURCES section for details of the data that can be viewed,
 NAVIGATION for how to interpret the data structures and VISUALISATION
 for how to examine the data once displayed.

 This GUI requires Xwindows to run, use other front ends or command line
 tools if you do not have that facility.

OPTIONS
 -c <purl>
 Append user configuration data from the route <purl>, rather
 than the default file ~/.habrc.

 -C <cfcmd>
 Append a list of configuration directives from <cfcmd>, sepa-
 rated by semicolons.

 -d Place ghabitat in diagnositc mode, giving an additional level of
 logging and sending the text to stderr rather than the default
 or configured destinations. In daemon mode, will send output to
 the controlling terminal.

 -D Place ghabitat in debug mode. As -d above but generating a
 great deal more information, designed to be used in conjunction
 with the source code. Also overrides normal outputs and will
 send the text to stderr. In daemon mode, will send output to
 the controlling terminal.

 -e <fmt>
 Change the logging output to one of eight preset alternative
 formats, some showing additional information. <fmt> must be
 0-7. See LOGGING below.

 -h Print a help message to stdout and exit

 -v Print the version to stdout and exit

 -s Run in safe mode, which prevents ghabitat automatically loading
 data from files or over the network from peer machines or the
 repository. Use if ghabitat start up time is excessively long.
 Once started, all data resourcese can be loaded manually.

DATA SOURCES
 Currently, data can be obtained from four types of sources:-

 Storage file
 The standard local data storage file known as a ringstore, which
 is a structured format using GDBM. Open it with File->Open or
 ^O and use the file chooser. The file will appear under my
 files in the choice tree.

 Repository
 Centralised data automatically appears under the repository node
 in the choice tree if the configuration directive is set to a
 valid location. The directive is route.sqlrs.geturl which must
 contain the URL of a repository output interface.
 (route.sqlrs.puturl works in the opposite direction for replica-
 tion.)

 Network data
 Data for an individual machine can be read from the repository
 or a peer clockwork instance on another host. Select File->Host
 or ^H, type in the hostname and pick repository or host as a
 source. (Currently, host access is not fully implemented.)
 Your selection will appear under my hosts in the choice tree.

 Route specification
 Select File->Route or ^R and type the full route specification
 of the data source. This is the most generic way of addressing
 in habitat, encompassing all of the styles used above and more.

 Files can be removed by selecting their entry from the list brought up
 with File->Close (^C).

NAVIGATION
 The repository source is special, in that the hierarchical nature of the
 group organisation is shown. To get to a machine, one needs to know
 its organisational location and traverse it in the tree. Whilst this
 aids browsing, one may wish to use the File->Host option to go directly
 to a machine.

 Opening the data source trees will reveal the capabilities of the data
 source, which include the following:-

 perf graphs
 Performance data is retrieved in a time series and will display
 as a chart the visualisation section

 perf data
 Performance data presented in a textual form, encompassing tabu-
 lar time-series data, key-data values or simple list. Visuali-
 sation is always in a table.

 events Text scanning, pattern matching and threshold breaching func-
 tionality is clustered under this node. The configuration tables
 are presented here along with the events and logs that have been
 generated.

 logs Logs and errors from running the jobs in clockwork

 replication
 Logs and state of the data replication to and from the reposi-
 tory

 jobs The job table that clockwork follows to collect and refine data

 data Contains all the data in the storage mechanism with out inter-
 pretation.

 Under the performance nodes will be the available data collections,
 also known as rings. The names of these collections are decided when
 data is inserted into the storage. For example, sending data to the
 route tab:fred.ts,mydata and mounting it under ghabitat, will cause the
 data to appear here as mydata.

 There are conventions for the names of standard probes, but they will
 only appear in a data store if their collection is configured in the
 job table (usually just uncommenting it: see clockwork(1)):-

 sys System data, such as cpu statistics and memory use. Labelled as
 system in choice tree

 io Disk statistics, such as read/write rates and performance lev-
 els. Labelled as storage in the choice tree

 net Network statistics, such as packets per second. Labelled as
 network in the choice tree

 ps Process table. This can contain a significant amount of data
 over time, so generally only the most significant or useful pro-
 cesses may be included. This is dependent on the configuration
 of the ps probe. Labelled as processes in the choice tree

 names A set of name-value pairs relating to the configuration of the
 operating system. Generally captured at start up only.

 The final set of nodes below the ring names are a set of time scales by
 which to examine the data. These dictate how much data is extracted
 from the data source and generally the speed at which the data will be
 visualised. These are preset to useful values, commonly 5 minutes, 1
 hour, 4 hours, 1 day, 7 days, 1 month, 3 months, 1 year, 3 years, etc.

VISUALISATION
 The right hand section of the window is used for visualisation. Its
 major uses are for charting and displaying tables.

 When charting, the section is divided into several parts. The greatest
 is used for the graph itself, with other areas being used for curve
 selection, zooming and data scaling. If the data is multi-instance,
 such as with multiple disks, then a further area is added to control
 the number of instance graphs being displayed.

 The standard sets of data, such as sys and io have default curves that
 are displayed when the graph is first drawn. The list of curves down
 the right hand side are buttons used to draw or remove data on the
 graph. When drawn, the button changes colour to that of of the curve
 displayed.

 Whilst the largest amount of data displayed is selected from the choice
 tree, it is possible to 'zoom-in' to particular times very easily using
 the graph. There are two methods: either drag the mouse of the area of
 interest, creating a rectangle and click the left button inside or use
 the x and y axis zoom buttons from the Zoom & Scale area. The display
 shows the enlarged view and changes the scale the x & y rulers. The
 time ruler is changes mode to show the most useful feedback of time at

 that scale. To move back and forth along time, move the horizontal
 scrollbar. To zoom out, either click the right mouse button over the
 graph or use the zoom-out button in the Zoom & Scale area.

 It is possible to alter the scale and offset of the curves by clicking
 on the additional fields button in the Zoom & Scale area. This will
 create addition scale and offset controls next to each curve button.
 The values relate to the formula y = mx + c, where the offset is c and
 the scale is m. Moving the scale changes the magnitude of the curve,
 whereas the offset changes the point at which the curve originates.
 Using these tools, simple parity can be gained between two curves that
 you wish to superimpose on the same chart but do not share the same y
 scale.

MENU
 The File menu adds and removes file and other data sources to the
 choice tree. It also contains import and export routines to convert
 between native datastores and plain text, such as csv and tsv files.

 The View menu controls the display and refresh of choice and visualisa-
 tion. It also give the ability to save or send data being displayed to
 e-mail, applications or a file.

 The Collect menu controls data collection, if you own the collection
 process.

 The Graph menu changes the appearance of the chart and is only dis-
 played when the graph appears.

 Finally, the Help menu gives access to spot help, documentation and
 links to the system garden web site for product information. Most help
 menu items need a common browser on the users path to show help infor-
 mation.

LOGGING
 Ghabitat generates information and error messages. By default, errors
 are captured internally and can be displayed in the visualisation area
 by clicking on the logs node under this client.

 Also available in this area are the log routes, which shows the how
 information of different severity is dealt with and configuration,
 which shows the values of all the current configuration directives in
 effect.

 See habconf(5) for more information.

FILES
 Locations alter depending on how the application is installed.

 For the habitat configuration
 ~/.habrc
 $HAB/etc/habitat.conf or /etc/habitat.conf

 For graphical appearance: fonts, colours, styles, etc
 $HAB/lib/ghabitat.rc or /usr/lib/habitat/ghabitat.rc

 For the help information
 $HAB/lib/help/ or /usr/lib/habitat/help/

ENVIRONMENT VARIABLES
 DISPLAY
 The X-Windows display to use

 PATH Used to locate a browser to display help information. Typical
 browsers looked for are Mozilla, Netscape, Konqueror, Opera,
 Chimera

 HOME User's home directory

AUTHORS
 Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
 clockwork(1), killclock(1), habget(1), habput(1), irs(1), habedit(1),
 habprobe(1), habmeth(1), habconf(5)

 12.1.3 habget
NAME
 habget - Send habitat data to stdout

SYNTAX
 habget [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhv] [-E] <route>

DESCRIPTION
 Open <route> using habitat's route addressing and send the data to std-
 out.

 See clockwork(1) for an explanation of the route syntax

OPTIONS
 -c <purl>
 Append user configuration data from the route <purl>, rather
 than the default file ~/.habrc.

 -C <cfcmd>
 Append a list of configuration directives from <cfcmd>, sepa-
 rated by semicolons.

 -d Place ghabitat in diagnostic mode, giving an additional level of
 logging and sending the text to stderr rather than the default
 or configured destinations. In daemon mode, will send output to
 the controlling terminal.

 -D Place ghabitat in debug mode. As -d above but generating a
 great deal more information, designed to be used in conjunction
 with the source code. Also overrides normal outputs and will
 send the text to stderr. In daemon mode, will send output to
 the controlling terminal.

 -e <fmt>
 Change the logging output to one of eight preset alternative
 formats, some showing additional information. <fmt> must be
 0-7. See LOGGING below.

 -h Print a help message to stdout and exit

 -v Print the version number to stdout and exit

 -E Escape characters in data that would otherwise be unprintable

EXAMPLES
 To output the job table from an established datastore file used for
 public data collection. This uses the ringstore driver.

 habget rs:var/myhost.rs,clockwork,0

 To get the most recent data sample from the 60 second sys ring from the
 same datastore as above.

 habget rs:var/myhost.rs,sys,60

 To find errors that may have been generated by clockwork.

 habget rs:var/myhost.rs,log,0

 12.1.4 habput
NAME
 habput - Store habitat data from stdin

SYNTAX
 habput [-s <nslots> -t <desc>] [-c <purl>] [-C <cfcmd>] [-e <fmt>]
 [-dDhv] <route>

DESCRIPTION
 Open <route> using habitat's route addressing and send data from stdin
 to the route.

 See clockwork(1) for an explanation of the route syntax

OPTIONS
 -c <purl>
 Append user configuration data from the route <purl>, rather
 than the default file ~/.habrc.

 -C <cfcmd>
 Append a list of configuration directives from <cfcmd>, sepa-
 rated by semicolons.

 -d Place ghabitat in diagnostic mode, giving an additional level of
 logging and sending the text to stderr rather than the default
 or configured destinations. In daemon mode, will send output to
 the controlling terminal.

 -D Place ghabitat in debug mode. As -d above but generating a
 great deal more information, designed to be used in conjunction
 with the source code. Also overrides normal outputs and will
 send the text to stderr. In daemon mode, will send output to
 the controlling terminal.

 -e <fmt>
 Change the logging output to one of eight preset alternative
 formats, some showing additional information. <fmt> must be
 0-7. See LOGGING below.

 -h Print a help message to stdout and exit

 -v Print the version to stdout and exit

 -s <nslots>
 Number of slots for creating ringed routes (default 1000);
 <nslots> of 0 gives a queue behaviour where the oldest data is
 not lost

 -t <desc>
 text description for creating ringed routes

EXAMPLES
 To append a sample of tabular data to a table store, use a tablestore
 driver. This will create a ring which can store 1,000 slots of data.

 habput tab:var/myfile.ts,myring

 To save the same data, but limit the ring to just the most recent 10
 slots and give the ring a description

 habput -s 10 -t "my description" tab:var/myfile.ts,myring

 The same data, stored to the same location, but with an unlimited his-
 tory (technically a queue). To make the ring readable in ghabitat with
 current conventions, we store with the prefix '.r'

 habput -s 0 -t "my description" tab:var/myfile.ts,r.myring

 To save an error record, use a timestore driver

 habput -s 100 -t "my logs" ts:var/myfile.ts,mylogs

AUTHORS
 Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
 clockwork(1), killclock(1), ghabitat(1), habget(1), irs(1), habedit(1),
 habprobe(1), habmeth(1), habconf(5)

 12.1.5 killclock
NAME
 killclock - Stops clockwork, Habitat's collection agent

SYNTAX
 killclock

DESCRIPTION
 Stops the public instance of clockwork running on the local machine.

 This shell script locates the lock file for clockwork, which is the
 collection agent for the Habitat suite. It prints the process id, own-
 ing user, controlling terminal and start time of the daemon, before
 sending it a SIGTERM.

 No check is made that the clockwork process has terminated before this
 script ends.

 Private instances of clockwork (started with -j option) can not be
 stopped by this method, as they do not register in a lock file.
 Instead, they should be controlled by conventional process control
 methods.

FILES
 /tmp/clockwork.run
 /var/run/clockwork.run

EXAMPLES
 Typing the following:-

 killclock

 will result in a display similar to below and the termination of the
 clockwork daemon.

 Stopping pid 2781, user nigel and started on /dev/pts/2 at 25-May-04
 08:08:55 AM

AUTHORS
 Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
 clockwork(1), ghabitat(1), habget(1), habput(1), irs(1), habedit(1),
 habprobe(1), habmeth(1), habconf(5)

 12.2 Collected Data

The tables below shows the data that is collected by the standard probes in habitat, one table per operating

system. It may not be up to date, so always check with the application itself.

 12.2.1 Linux Data

Probe Measure Description

sy
st

em
 (

sy
s) load1 1 minute load average

load5 5 minute load average

load15 15 minute load average

runque number of runnable processes

nprocs number of processes

lastproc id of last process run

mem_tot total memory (kB)

mem_used memory used (kB)

mem_free memory free (kB)

mem_shared used memory shared (kB)

mem_buf buffer memory (kB)

mem_cache cache memory (kB)

swap_tot total swap space (kB)

swap_used swap space used (kB)

swap_free swap space free (kB)

uptime seconds that the system has been up

idletime seconds that system has been idle

%user % time cpu was in user space

%nice % time cpu was at nice priority in user space

%system % time cpu spent in kernel

%idle % time cpu was idle

pagein pages paged in per second

pageout pages paged out per second

swapin pages swapped in per second

swapout pages swapped out per second

interrupts hardware interrupts per second

contextsw context switches per second

forks process forks per second

st
o

ra
g

e
(io

)

id mount or device identifier

device device name

mount mount point

fstype filesystem type

size size of filesystem or device (MBytes)

used space used on device (MBytes)

reserved reserved space in filesystem (KBytes)

%used % used on device

kread volume of data read (KB/s)

kwritten volume of data written (KB/s)

rios number of read operations per second

wios number of write operations per second

read_svc_t average read service time (ms)

write_svc_t average write service time (ms)

Probe Measure Description
n

et
w

o
rk

 (
ne

t)
device device name

rx_bytes bytes received

rx_pkts packets received

rx_errs receive errors

rx_drop receive dropped packets

rx_fifo received fifo

rx_frame receive frames

rx_comp receive compressed

rx_mcast received multicast

tx_bytes bytes transmitted

tx_pkts packets transmitted

tx_errs transmit errors

tx_drop transmit dropped packets

tx_fifo transmit fifo

tx_colls transmit collisions

tx_carrier transmit carriers

tx_comp transmit compressed

u
p

ti
m

e
(u

p) uptime uptime in secs

boot time of boot in secs from epoch

suspend secs suspended

vendor vendor name

model model name

nproc number of processors

mhz processor clock speed

cache size of cache in kb

fpu floating point unit available

d
o

w
n

ti
m

e

(d
ow

n) lastup time last alive in seconds from epoch

boot time of boot in secs from epoch

downtime secs unavailable

p
ro

ce
ss

es
 (

ps
)

pid process id

ppid process id of parent

pidglead process id of process group leader

sid session id

uid real user id

pwname name of real user

euid effective user id

epwname name of effective user

gid real group id

egid effective group id

size size of process image in Kb

rss resident set size in Kb

flag process flags (system dependent)

nlwp number of lightweight processes within this process

tty controlling tty device

%cpu % of recent cpu time

%mem % of system memory

start process start time from epoc

time total cpu time for this process

childtime total cpu time for reaped child processes

nice nice level for cpu scheduling

syscall system call number (if in kernel)

pri priority (high value=high priority)

Probe Measure Description

wchan wait address for sleeping process

wstat if zombie the wait() status

cmd command/name of exec'd file

args full command string

user_t user level cpu time

sys_t sys call cpu time

otrap_t other system trap cpu time

textfault_t text page fault sleep time

datafault_t data page fault sleep time

kernelfault_t kernel page fault sleep time

lockwait_t user lock wait sleep time

osleep_t all other sleep time

waitcpu_t wait-cpu (latency) time

stop_t stopped time

minfaults minor page faults

majfaults major page faults

nswaps number of swaps

inblock input blocks

outblock output blocks

msgsnd messages sent

msgrcv messages received

sigs signals received

volctx voluntary context switches

involctx involuntary context switches

syscalls system calls

chario characters read and written

pendsig set of process pending signals

heap_vaddr virtual address of process heap

heap_size size of process heap in bytes

stack_vaddr virtual address of process stack

stack_size size of process stack in bytes

h
ar

d
w

ar
e

in
te

rr
u

p
ts

(in
tr

) name device name

hard interrupts from hardware device

soft interrupts self induced by system

watchdog interrupts from a periodic timer

spurious interrupts for unknown reason

multisvc multiple servicing during single interrupt

sy
st

em

va
lu

es

(n
am

es
)

name name

vname value name

value value of symbol

 12.2.2 Solaris Data

Probe Measure Description

sy
st

em
 (

sy
s) updates

runque += num runnable procs

runocc ++ if num runnable procs > 0

swpque += num swapped procs

swpocc ++ if num swapped procs > 0

waiting += jobs waiting for I/O

freemem += freemem in pages

swap_resv += reserved swap in pages

swap_alloc += allocated swap in pages

swap_avail += unreserved swap in pages

swap_free += unallocated swap in pages

%idle time cpu was idle

%wait time cpu was idle waiting for IO

%user time cpu was in user space

%system time cpu was in kernel space

wait_io time cpu was idle waiting for IO

wait_swap time cpu was idle waiting for swap

wait_pio time cpu was idle waiting for programmed I/O

bread physical block reads

bwrite physical block writes (sync+async)

lread logical block reads

lwrite logical block writes

phread raw I/O reads

phwrite raw I/O writes

pswitch context switches

trap traps

intr device interrupts

syscall system calls

sysread read() + readv() system calls

syswrite write() + writev() system calls

sysfork forks

sysvfork vforks

sysexec execs

readch bytes read by rdwr()

writech bytes written by rdwr()

rawch terminal input characters

canch chars handled in canonical mode

outch terminal output characters

msg msg count (msgrcv()+msgsnd() calls)

sema semaphore ops count (semop() calls)

namei pathname lookups

ufsiget ufs_iget() calls

ufsdirblk directory blocks read

ufsipage inodes taken with attached pages

ufsinopage inodes taked with no attached pages

inodeovf inode table overflows

fileovf file table overflows

procovf proc table overflows

intrthread interrupts as threads (below clock)

Probe Measure Description

intrblk intrs blkd/prempted/released (switch)

idlethread times idle thread scheduled

inv_swtch involuntary context switches

nthreads thread_create()s

cpumigrate cpu migrations by threads

xcalls xcalls to other cpus

mutex_adenters failed mutex enters (adaptive)

rw_rdfails rw reader failures

rw_wrfails rw writer failures

modload times loadable module loaded

modunload times loadable module unloaded

bawrite physical block writes (async)

iowait procs waiting for block I/O

pgrec page reclaims (includes pageout)

pgfrec page reclaims from free list

pgin pageins

pgpgin pages paged in

pgout pageouts

pgpgout pages paged out

swapin swapins

pgswapin pages swapped in

swapout swapouts

pgswapout pages swapped out

zfod pages zero filled on demand

dfree pages freed by daemon or auto

scan pages examined by pageout daemon

rev revolutions of the page daemon hand

hat_fault minor page faults via hat_fault()

as_fault minor page faults via as_fault()

maj_fault major page faults

cow_fault copy-on-write faults

prot_fault protection faults

softlock faults due to software locking req

kernel_asflt as_fault()s in kernel addr space

pgrrun times pager scheduled

nc_hits hits that we can really use

nc_misses cache misses

nc_enters number of enters done

nc_dblenters num of enters when already cached

nc_longenter long names tried to enter

nc_longlook long names tried to look up

nc_mvtofront entry moved to front of hash chain

nc_purges number of purges of cache

flush_ctx num of context flushes

flush_segment num of segment flushes

flush_page num of complete page flushes

flush_partial num of partial page flushes

flush_usr num of non-supervisor flushes

flush_region num of region flushes

var_buf num of I/O buffers

var_call num of callout (timeout) entries

var_proc max processes system wide

Probe Measure Description

var_maxupttl max user processes system wide

var_nglobpris num of global scheduled priorities configured

var_maxsyspri max global priorities used by system class

var_clist num of clists allocated

var_maxup max number of processes per user

var_hbuf num of hash buffers to allocate

var_hmask hash mask for buffers

var_pbuf num of physical I/O buffers

var_sptmap size of sys virt space alloc map

var_maxpmem max physical memory to use in pages (if 0 use all available)

var_autoup min secs before a delayed-write buffer can be flushed

var_bufhwm high water mrk of buf cache in KB

var_xsdsegs num of XENIX shared data segs

var_xsdslots num of slots in xsdtab[] per segmt

flock_reccnt num of records currently in use

flock_rectot num of records used since boot

p
ro

ce
ss

es
 (

ps
)

pid process id

ppid process id of parent

pidglead process id of process group leader

sid session id

uid real user id

pwname name of real user

euid effective user id

epwname name of effective user

gid real group id

egid effective group id

size size of process image in Kb

rss resident set size in Kb

flag process flags (system dependent)

nlwp number of lightweight processes within this process

tty controlling tty device

%cpu % of recent cpu time

%mem % of system memory

start process start time from epoc

time total cpu time for this process

childtime total cpu time for reaped child processes

nice nice level for scheduling

syscall system call number (if in kernel)

pri priority (high value=high priority)

wchan wait address for sleeping process

wstat if zombie the wait() status

cmd command/name of exec'd file

args full command string

user_t user level cpu time

sys_t sys call cpu time

otrap_t other system trap cpu time

textfault_t text page fault sleep time

datafault_t data page fault sleep time

kernelfault_t kernel page fault sleep time

lockwait_t user lock wait sleep time

osleep_t all other sleep time

waitcpu_t wait-cpu (latency) time

Probe Measure Description

stop_t stopped time

minfaults minor page faults

majfaults major page faults

nswaps number of swaps

inblock input blocks

outblock output blocks

msgsnd messages sent

msgrcv messages received

sigs signals received

volctx voluntary context switches

involctx involuntary context switches

syscalls system calls

chario characters read and written

pendsig set of process pending signals

heap_vaddr virtual address of process heap

heap_size size of process heap bytes

stack_vaddr virtual address of process stack

stack_size size of process stack bytes

st
o

ra
g

e
(io

)

device device name

nread number of bytes read

nwritten number of bytes written

reads number of read operations

writes number of write operations

wait_t cumulative wait (pre-service) time

wait_len_t cumulative wait length*time product

run_t cumulative run (service) time

run_len_t cumulative run length*time product

wait_cnt wait count

run_cnt run count

S
ys

te
m

va
lu

es

(n
am

es
)

name name

vname value name

value value

sy
st

em
 t

im
er

s

(t
im

er
)

kname timer name

name event name

nevents number of events

elapsed_t cumulative elapsed time

min_t shortest event duration

max_t longest event duration

start_t previous event start time

stop_t previous event stop time

u
p

ti
m

e
(u

p) uptime uptime in secs

boot time of boot in secs from epoch

suspend secs suspended

vendor vendor name

model model name

nproc number of processors

mhz processor clock speed

cache size of cache in kb

fpu floating point unit available

d
o

w
n

-

ti
m

e

(d
ow

n) lastup time last alive in secs from epoch

boot time of boot in secs from epoch

downtime secs unavailable

Probe Measure Description
h

ar
d

w
ar

e

in
te

rr
u

p
ts

 (
in

tr
)

name device name

hard interrupt from hardware device

soft interrupt self induced by system

watchdog interrupt from periodic timer

spurious interrupt for unknown reason

multisvc multiple servicing during single interrupt

 12.3 Fat Headed Array Format

The Fat Headed Array is a table of information designed for transportation between systems and external

representation. Habitat uses FHAs when reading clockwork's central store and for I/O work with harvest. It is

also used when loading data into harvest's repository when linking with other systems.

There are three parts to the data in the following order:

1. Column names: tab separated attribute names that must be in line 1

2. Info Rows: zero or more lines of meta information for each attribute. Each meta record takes one line,

separating its fields with tabs which must be in the same order as the attribute names. Each info row is

named with a trailing supplementary field, such that these rows have one more column than the data

or column name rows. Info rows are terminated with a row which must start with two dashes '--'.

3. One or more data rows to follow the column names and info rows.

The following is an example of a FHA.

tom dick harry
Thomas Richard Harold first_name
Smith Brown Bloggs last_name
------ ------- ------
1 2 3
4 5 6
7 8 9

To represent an empty value, two quotes should be used (“”). Occasionally, this may also be represented as

a single dash.

To represent a value that contains tab characters (\t), the value should be contains in quotes (eg “embedded

\t tab“).

Column names may only contain characters accepted by SQL database servers to ensure compatibility. This

is generally accepted as the range [A-Za-z_]. See the info row name below for greater expression.

In addition to pure character formatting, ghabitat the graphical client, also understands certain named info

rows.

1. info – the text in the row is used as informational help in the client. This can be seen when hovering the

mouse over a column name in a table or a curve's button when displaying charts. The information is

Tab separated data

rows

Each info row is

named with an

extra field

Info rows contains

more information

about each column

Columns names

in the first row

contained in graphical 'pop-ups' or 'tool tips'.

2. max – Optional value which, if present, sets the maximum expected value for an attribute. This helps in

making charts more understandable.

3. type – the data type of the column. In version 1, the data types are relatively simple:-

1. i32 – 32-bit signed integer

2. u32 – 32-bit unsigned integer

3. i64 – 64 bit signed integer

4. u64 – 64bit unsigned integer

5. nano – nano second precision when used for timers. Currently also used for floating point values with

more restrictive accuracy

6. str – string value

4. key – The column that is the primary key of the table contains a 1, all the other values contain no value

(“”). May be expanded to show secondary or tertiary keys in later versions.

5. name – The unrestricted full name of the column, if it is not possible to express it in the column name. If

blank, the column name is used as the attribute's label. This is used to include punctuation characters

such as '-' or '%' in the label as they are disallowed by the SQL naming standard but can be very useful

for compact expression.

 12.4 Job Table Format

Clockwork reads a job table and uses the information to establish repeating and timed jobs. It is similar to the

Unix scheduler cron, but with greater flexibility.

When first run, clockwork boot straps an initial version of its jobs from the file lib/clockwork.jobs. The

resulting table is stored in the ringstore location var/<hostname>.rs,jobs,0. Subsequent runs of clockwork will

use this table, so any amendments should be made using habedit on the ringstore route.

Clockwork may also be started with an alternate job table by using the the -j switch to clockwork. In this

mode, clockwork runs a private data collector with out starting a network service for the whole machine.

Jobs are defined in a multi columned text format, headed by the magic string 'job 1'. Comments may appear

anywhere, starting with '#' and running to the end of the line. Each job is defined on a single line containing

11 arguments, which in order are:-

1. start – when to start the job, in seconds from the starting of clockwork

2. period – how often to repeat the job, in seconds

3. phase – not yet implemented

4. count – how many times the job should be run, with 0 repeating forever

5. name – name of the job

6. requester – who requested the job, by convention the email address

7. results – the route where results should be sent

8. errors – the route where errors should be sent

9. nslots – the number of slots created in the 'results' and 'errors' routes, if applicable (applies to

ringstore and SQL ringstore).

10.method – the job method

11.command – the arguments given to each method

Part of a job table taken from the default file lib/clockwork.jobs is printed below. The top line runs the sys

probe every 60 seconds, gathering system data (which becomes the system node in the choice tree). The

remaining lines use the collected high frequency data and transform it to lower frequencies using an

averaging process, running every five minutes, fifteen minutes and one month (300, 900 and 3600 seconds).

The job running every 300 seconds creates a storage ring with 288 entries, allowing a full day's data at five

minute intervals to be collected. The other jobs collect seven days at 15 minutes and one month at hourly

intervals.

The methods are probe which is given the command sys, and sample which has the command avg and the

route to sample as its argument. These methods are available on the command line using habmeth. The

probe data is similarly available using the command habprobe.

Note that special tokens are used which expand when clockwork is running. These are %d for the ring's

duration and %h for the hostname. Other tokens are available which are explored in the Administration

manual.

 12.5 Pattern Matching Table Format

The pattern matching table is user configurable, using the processing mechanism is described earlier in this

document.

The pattern-matching table, which defines the bahaviour has the following columns:

1. pattern – the regular expression to look for as a pattern, which should normally match a single line.

Each match is considered an event.

2. embargo time – number of seconds that must elapse after the first event before another event may be

raised of the same pattern from the same route.

3. embargo count – maximum number of identical pattern matches that can take place before another

event is raised for that pattern and route.

4. severity – importance of the event. One of: fatal, error, warning, info, diag, debug

start

0
0
0
0

period

60
300
900
3600

phase

0
0
0
0

count

0
0
0
0

name

sys,%d
sys,%d
sys,%d
sys,%d

requester

sysgar
sysgar
sysgar
sysgar

results

rs:%h.rs,%j
rs:%h.rs,%j
rs:%h.rs,%j
rs:%h.rs,%j

errors

rs:%h.rs,err,0
rs:%h.rs,err,0
rs:%h.rs,err,0
rs:%h.rs,err,0

nrings

240
288
672
672

method

probe
sample
sample
sample

command

 sys
“avg rs:%h.rs,sys,60”
“avg rs:%h.rs,sys,300”
“avg rs:%h.rs,sys,900”

5. action method – event's execution method

6. action arguments – method specific arguments

7. action message – text message to describe the event. It may contain special tokens of the form

%<char> that describe other information about the event.

When the event is detected and is not subject to embargo, then an event is raised. A text message is

prepared which is turned into an instruction using the action method and arguments. Then, it is appended to

the event ring for execution (see below).

 12.6 Watched Sources Table Format

The watched sources table defines a set of routes associated with a identifier. A watching job then ties

together a set of sources with a set of patterns and executes them periodically. When the watching job starts,

it checks all the routes defined in this table for changes in size. Those that have changed will be checked for

pattern matches (see the details above).

The format of the table is simple: one entry per line, with each being a valid route format.

 12.7 Event Table Format

The event table is filled from the activities of pattern matching and threshold detection. When there is a

match not covered by an embargo, an event will be raised, which is a instruction to execute a method

supported by the habitat job environment. The instructions are queued as separate sequences in the event

ring, which is stored in the system ringstore.

The table format is simple:-

1. method – execution method as supported by the habitat job environment.

2. command – command to give to method

3. arguments – command arguments, which may contain spaces. The '%' character must be escaped if

it is to be used in an argument (see below)

4. stdin – input text to the method, which must be introduced with '%' to separate it from the argument.

Successive % characters represent new lines. To actually print %, escape it with backslash (\%).

When an event has been completed, the next sequence to be processed is stored in a state table. The event

ring is a finite length, so old events will be removed automatically over time.

	 1 A Tour of Habitat
	 2 Getting Started
	 2.1 Collection by User
	 2.2 System Collection
	 2.3 Initial ghabitat view

	 3 Concepts
	 3.1 Architecture
	 3.1.1 Single Host: ghabitat + clockwork
	 3.1.2 Many Hosts: ghabitat + many clockworks
	 3.1.3 Many Hosts with Repository: ghabitat + clockwork + harvest
	 3.1.4 Extensible Collection Methods
	 3.1.5 System vs. Private Clockwork Instances
	 3.1.6 Storage & Transport Integration

	 3.2 Data Format
	 3.3 Data Collection
	 3.4 Data Addressing
	 3.5 Data Storage
	 3.6 Ringstore & SQLRingstore
	 3.6.1 Local Data Storage
	 3.6.2 Peer Data Access
	 3.6.3 Remote Data Repository

	 3.7 Data Replication
	 3.8 User Interfaces
	 3.8.1 Command Line
	 3.8.2 Curses
	 3.8.3 Graphical

	 4 Clockwork: The Collection Agent
	 4.1 Starting
	 4.2 Stopping
	 4.3 Status

	 5 Graphical Tools
	 5.1 Data Visualisation
	 5.1.1 Data In Charts or Graphs
	 5.1.2 Data In Tables
	 5.1.3 Data In Row Popups From a Table

	 5.2 Data Navigation
	 5.2.1 Finding Data Sources
	 5.2.2 Source Exploration
	 5.2.3 Changing Timescales
	 5.2.4 Selecting Curves
	 5.2.5 Zooming and Panning Graphs
	 5.2.6 Adapting Curves
	 5.2.7 Custom Graphs
	 5.2.8 Selecting Instances

	 5.3 Import and Export
	 5.3.1 Email
	 5.3.2 External Tools
	 5.3.3 Interchange Files

	 5.4 Data Files
	 5.4.1 Saving Data in Files
	 5.4.2 Opening Data Files
	 5.4.3 Closing Data Files

	 5.5 Data Access from Peer Hosts
	 5.5.1 Peer Data over Filesystem
	 5.5.2 Peer Data over Network
	 5.5.3 Data from Repository

	 5.6 Graphical Viewer Information & Configuration
	 5.6.1 Configuration Files
	 5.6.2 Data Source History
	 5.6.3 Viewing Current Configuration

	 6 Text Terminal Tools
	 6.1 Track

	 7 Command Line Tools
	 7.1 Common Arguments
	 7.2 Data Addressing
	 7.3 habget
	 7.4 habput
	 7.5 Clockwork & killclock
	 7.6 /etc/init.d/habitat
	 7.7 Other commands

	 8 System Performance
	 8.1 Indicators
	 8.1.1 System
	 8.1.2 Storage
	 8.1.3 Network
	 8.1.4 Other Indicators

	 8.2 Adding to the standard data
	 8.2.1 Synthesising New Values

	 8.3 What is Abnormal?
	 8.4 Further Reading

	 9 Events
	 9.1 Event Queue
	 9.2 Watching Jobs
	 9.3 Watched Sources
	 9.4 Pattern-Action Data
	 9.5 Thresholds

	 10 Administration
	 10.1 Replication
	 10.2 Logs & Errors
	 10.3 Jobs
	 10.4 Raw Data

	 11 Diagnostics
	 11.1 Log Configuration
	 11.2 Collecting Less Severe Logs
	 11.3 Viewing Logs from the Choice Tree
	 11.4 Dynamic Viewing of Logs from Statusbar

	 12 Appendix
	 12.1 Manual Pages
	 12.1.1 clockwork
	 12.1.2 ghabitat
	 12.1.3 habget
	 12.1.4 habput
	 12.1.5 killclock

	 12.2 Collected Data
	 12.2.1 Linux Data
	 12.2.2 Solaris Data

	 12.3 Fat Headed Array Format
	 12.4 Job Table Format
	 12.5 Pattern Matching Table Format
	 12.6 Watched Sources Table Format
	 12.7 Event Table Format

